The Impact of Channel Errors in Passive Coherent Location Radar using FM Base Stations

This paper presents the impact of channel errors for an FM based passive bistatic radar system mounted on mobile platforms for ground moving target indication (GMTI). Reciprocal filter, which is effective compared to conventional matched filter (MF), is performed for the pulse compression stage to remove the time-variant structure of the signal. The displaced phase centre antenna (DPCA) method is applied for the clutter cancellation and target detection. This technique is effective if the hardware is well calibrated. Thereby, the influences of calibration errors between the receiving channels are studied for different FM waveforms. The simulation results of the amplitude and phase errors are analysed separately.

The Impact of Channel Errors in Passive Coherent Location Radar using FM Base Stations

This paper presents the impact of channel errors for an FM based passive bistatic radar system mounted on mobile platforms for ground moving target indication (GMTI). Reciprocal filter, which is effective compared to conventional matched filter (MF), is performed for the pulse compression stage to remove the time-variant structure of the signal. The displaced phase centre antenna (DPCA) method is applied for the clutter cancellation and target detection. This technique is effective if the hardware is well calibrated. Thereby, the influences of calibration errors between the receiving channels are studied for different FM waveforms. The simulation results of the amplitude and phase errors are analysed separately.

___

  • [1] Blasone G. P., Colone F., Lombardo P., Wojaczek P. and Cristallini D., “A two-stage approach for direct signal and clutter cancellation in passive radar on moving platforms”, 2019 IEEE Radar Conference, 1-6, (2019).
  • [2] Pisciottano I., Cristallini D., Schell J. and Seidel V., “Passive ISAR for maritime target imaging: Experimental results”, Proceedings International Radar Symposium, 1-10, (2018).
  • [3] Kuschel H., Heckenbach J. and Ummenhofer M., “Passive radar collision warning system PARASOL”, IEEE Aerosp. Electron. Syst. Mag., 32(2): 40-52, (2017).
  • [4] Brown J., Woodbridge K., Griffiths H., Stove A. and Watts S., “Passive bistatic radar experiments from an airborne platform”, IEEE Aerosp. Electron. Syst. Mag., 27(11): 50–55, (2012).
  • [5] Palmer J., Ummenhofer M., Summers A., Bournaka G., Palumbo S. and Cristallini D., “Receiver platform motion compensation in passive radar”, IET Radar, Sonar & Navigation, 11(6): 922–931, (2017).
  • [6] Makhoul E., Baumgartner S. V., Jager M. and Broquetas A., “Multichannel SAR-GMTI in Maritime Scenarios with F-SAR and TerraSAR-X Sensors”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(11): 5052–5067, (2015).
  • [7] Zemmari R., Nickel U. and Wirth W. D., “GSM Passive Radar for Medium Range Surveillance”, 2009 European Radar Conference (EuRAD), 49-52, (2009).
  • [8] Rzewuski S., Wielgo M., Kulpa K., Kulpa M. and Kulpa J., “Multistatic passive radar based on WIFI - Results of the experiment”, 2013 International Conference on Radar - Beyond Orthodoxy: New Paradigms in Radar, 230–234, (2013).
  • [9] Wojaczek P., Colone F., Cristallini D., Lombardo P. and Kuschel H., “The application of the reciprocal filter and DPCA for GMTI in DVB-T - PCL”, IET Conference Publications, 2017(CP728): 1-5, (2017).
  • [10] Bournaka G., Baruzzi A., Heckenbach J. and Kuschel H., “Experimental validation of beamforming techniques for localization of moving target in passive radar”, IEEE National Radar Conference - Proceedings, 2015(June): 1710–1713, (2015).
  • [11] Brisken S., Moscadelli M., Seidel V. and Schwark C., “Passive radar imaging using DVB-S2”, 2017 IEEE Radar Conference (RadarConf), 552-556, (2017).
  • [12] Malanowski M., Kulpa K. S., Samczynski P., Misiurewicz J. and Kulpa J., “Long range FM-based passive radar”, IET Conference Publications, 603: 62–62, (2012).
  • [13] Wojaczek P., Colone F., Cristallini D. and Lombardo P., “Reciprocal-Filter-Based STAP for Passive Radar on Moving Platforms”, IEEE Trans. Aerosp. Electron. Syst., 55(2): 967–988, (2018).
  • [14] Glende M., “PCL-Signal-Processing for Sidelobe Reduction in Case of Periodical Illuminator Signals”, in 2006 International Radar Symposium, 1-4, (2006).
  • [15] Colone F., O’Hagan D. W., Lombardo P. and Baker C. J., “A multistage processing algorithm for disturbance removal and target detection in passive bistatic radar”, IEEE Transactions on Aerospace and Electronic Systems, 45(2): 698–722, (2009).
  • [16] Gronowski K., Samczynski P., Stasiak K. and Kulpa K., “First results of air target detection using single channel passive radar utilizing GPS illumination”, 2019 IEEE Radar Conference, 1-6, (2019).
  • [17] Pieralice F. et al., “GNSS-based passive radar for maritime surveillance: Long integration time MTI technique”, 2017 IEEE Radar Conference, 508–513, (2017).
  • [18] Ma H. et al., “Maritime Moving Target Indication Using Passive GNSS-Based Bistatic Radar”, IEEE Transactions on Aerospace and Electronic Systems, 54(1): 115–130, (2018).
  • [19] Brown J. W. A., “FM Airborne Passive Radar”, Doctoral Thesis, University College London, (2013).
  • [20] Richardson P. G., “Analysis of the adaptive space time processing technique for airborne radar”, IEE Proceedings - Radar, Sonar and Navigation, 141(4): 187, (1994).
  • [21] Dong Y., “Phased Array Radar Data Processing Using Adaptive Displaced Phase Centre Antenna Principle”, Defence Science and Technology Organisation, (2007).
  • [22] Bakr O. M. and Johnson M., “Impact of Phase and Amplitude Errors on Array Performance”, EECS Technical Report. 10, [Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-1.html. (2009).
  • [23] Blasone G. P., Colone F. and Lombardo P., “Facing channel calibration issues affecting passive radar DPCA and STAP for GMTI”, 2020 IEEE International Radar Conference (RADAR), 31–36, (2020).
  • [24] Blasone G. P., Colone F., Lombardo P., Wojaczek P. and Cristallini D., “Passive Radar DPCA Schemes with Adaptive Channel Calibration”, IEEE Transactions on Aerospace and Electronic Systems. 1–1, (2020).
  • [25] Wojaczek P. and Cristallini D., “The influence of channel errors in mobile passive radar using DVB-T illuminators of opportunity”, Proceedings International Radar Symposium, 1-10, (2018).
  • [26] Moscardini C., Petri D., Capria A., Conti M., Martorella M. and Berizzi F., “Batches algorithm for passive radar: A theoretical analysis”, IEEE Transactions on Aerospace and Electronic Systems, 51(2): 1475–1487, (2015).
  • [27] Griffiths H. D., Baker J. C. and Howland P. E., “Passive Bistatic Radar Systems”, Bistatic Radar: Emerging Technology, Wiley, (2008).
  • [28] Dawidowicz B., Kulpa K. S., Malanowski M., Misiurewicz J., Samczynski P. and Smolarczyk M., “DPCA detection of moving targets in airborne passive radar”, IEEE Transactions on Aerospace and Electronic Systems, 48(2): 1347–1357, (2012).
  • [29] Dawidowicz B., Samczynski P., Malanowski M., Misiurewicz J. and Kulpa K. S., “Detection of moving targets with multichannel airborne passive radar”, IEEE Aerospace and Electronic Systems Magazine, 27(11): 42–49, (2012).
  • [30] Wojaczek P. M., “Passive Radar On Moving Platforms Exploiting DVB-T Transmitters Of Opportunity”, Doctoral Thesis, Sapienza University of Rome, (2019).
  • [31] Nickel U., “On the Influence of Channel Errors on Array Signal Processing Methods”, AEU - International Journal of Electronics and Communications, 47(4): 209–219, (1993).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ