SiC partikül boyutunun yerinde sentezleme yöntemi ile üretilen $;HfB_2$-SiC kompozitlerinin mikroyapısal, mekanik ve oksidasyon özellikleri üzerine etkisi

Hafniyum diborür-silisyum karbür ($;HfB_2$-SiC) seramik kompozitlerinin sentezlemesi ve yoğunlaştırılması, başlangıç tozları olarak $;HfB_2$, B ve SiC kullanılarak spark plazma sinterleme (SPS) yöntemi ile incelenmiştir. SiC partikül boyutunun (∼2μm ve ∼10μm) üretilen kompozitlerin mekanik özellikleri ve oksidasyon direncine etkisi kapsamlı olarak araştırılmıştır. Elde edilen sonuçlara göre ince SiC partikül takviyesi ile en yüksek yoğunluk (∼% 95 TY) elde edilmiştir. İnce SiC içeren kompozitlerin ölçülen Vickers sertliği ve kırılma tokluğu sırasıyla 14.3 GPa ve 5.42 MPa.m1/2 olarak hesaplanmıştır. Kırılma türü tane içi halden tane sınırları şekline değişmiş olup, toklaştırma mekanizması olarak çatlak saptırmanın aktif olduğu gözlenmiştir. Oksidasyon testi sonucundan, ince SiC partiküllerine sahip kompozit yapının kaba SiC içeren kompozit yapıya kıyasla homojen olmayan oksit tabakası içerdiği gözlemiştir.

Effect of SiC particle size on the microstructural, mechanical and oxidation properties of In-situ synthesized $;HfB_2$ -SiC composites

In-situ synthesis and densification of hafnium diboride - silicon carbide ($;HfB_2$-SiC) ceramic composites were studied by the spark plasma sintering (SPS) method using $;HfB_2$, B, and SiC as starting powders. Influence of SiC particle size (∼2 µm and ∼10 µm) on mechanical properties and oxidation resistance of in-situ composites were extensively investigated. According to the achieved results, the highest densification (∼95 % TD) was obtained with fine SiC particle reinforcement. The measured Vickers hardness and fracture toughness of the composites containing fine SiC were 14.3 GPa and 5.42 MPa.m1/2, respectively. The fracture mode changed from transgranular cleavage to a mixed-mode, and the crack deflection was believed to be the primary toughening mechanism. From oxidation test result, the composite with fine SiC particles exhibited more inhomogeneous oxide scales compared to that of coarse SiC containing composite.

___

  • [1] Levine R.S., Opila E., Halbig M., D Kiser J., Singh M., Salem A., “Evaluation of Ultra-High Temperature Ceramics for Aero Propulsion Use”, Journal of the European Ceramic Society, 22: 2757-2767,(2002).
  • [2] Fahrenholtz W. G., Hilmas G. E., Talmy I. G., Zaykoski J. A., “Refractory Diborides of Zirconium and Hafnium”, Journal of the American Ceramic Society, 90:1347- 1364,(2007).
  • [3] Akin I., Goller G., “Spark Plasma Sintering of ZirconiaToughened Alumina Composites and Ultra-High Temperature Ceramics Reinforced with Carbon Nanotubes”, “Research and Innovation in Carbon Nanotube-Based Composites”, (2015).
  • [4] Ni D.W., Zhang G.J., Kan Y.M., Wang P.L., “Synthesis of Monodispersed Fine Hafnium Diboride Powders Using Carbo/Borothermal Reduction of Hafnium Dioxide”, Journal of the American Ceramic Society, 91:2709- 2712,(2008).
  • [5] Wang H., Lee S. H., Kim H. D., Oh H. C., “Synthesis of Ultrafine Hafnium Diboride Powders Using SolutionBased Processing and Spark Plasma Sintering”, International Journal of Applied Ceramic Technology, 11,(2014).
  • [6] Brochu M., Gauntt B., Zimmerly T., Ayala A., Loehman R., “Fabrication of UHTCs by Conversion of Dynamically Consolidated Zr+B and Hf+B Powder Mixtures”, Journal of the American Ceramic Society, 91:2815- 2822,(2008).
  • [7] Ni D.-W., Zhang G.-J., Kan Y.-M., Wang P.-L., “Hot Pressed HfB2 and HfB2–20vol%SiC Ceramics Based on HfB2 Powder Synthesized by Borothermal Reduction of HfO2”, International Journal of Applied Ceramic Technology, 7:830-836,(2010).
  • [8] Blum Y. D., Marschall J., Hui D., Adair B., Vestel M., “Hafnium Reactivity with Boron and Carbon Sources Under Non-Self-Propagating High-Temperature Synthesis Conditions”, Journal of the American Ceramic Society, 91:1481-1488,(2008).
  • [9] Zou J., Zhang G.-J., Kan Y.-M., Ohji T., “Pressureless sintering mechanisms and mechanical properties of hafnium diboride ceramics with pre-sintering heat treatment”, Scripta Materialia, 62:159-162,(2010).
  • [10] Parthasarathy T. A., Rapp R. A., Opeka M., Kerans R. J., “A model for the oxidation of ZrB2, HfB2 and TiB2”, Acta Materialia, 55:5999-6010,(2007).
  • [11] Monteverde F., Bellosi A., “The resistance to oxidation of an HfB2–SiC composite”, Journal of the European Ceramic Society, 25:1025-1031,(2005).
  • [12] Monteverde F., “Ultra-high temperature HfB2–SiC ceramics consolidated by hot-pressing and spark plasma sintering”, Journal of Alloys and Compounds, 428:197- 205,(2007).
  • [13] Fahrenholtz W. G., “Thermodynamic Analysis of ZrB2– SiC Oxidation: Formation of a SiC-Depleted Region”, Journal of the American Ceramic Society, 90:143- 148,(2007).
  • [14] Monteverde F., Scatteia L., “Resistance to Thermal Shock and to Oxidation of Metal Diborides–SiC Ceramics for Aerospace Application”, Journal of the American Ceramic Society, 90:1130-1138,(2007).
  • [15] Mallik M., Ray K. K., Mitra R., “Oxidation behavior of hot pressed ZrB2–SiC and HfB2–SiC composites”, Journal of the European Ceramic Society, 31: 199-215,(2011).
  • [16] Carney C. M., Key T. S., “Comparison of the Oxidation Protection of HfB2 Based Ultra‐High Temperature Ceramics by the Addition of SiC or MoSi2”, Ceramic Engineering and Science Proceedings, 35:261- 273,(2014).
  • [17] Monteverde F., Melandri C., Guicciardi S., “Microstructure and mechanical properties of an HfB2+30vol.% SiC composite consolidated by spark plasma sintering”, Materials Chemistry and Physics, 100:513-519,(2006).
  • [18] Quach D. V., Groza J. R., Zavaliangos A., AnselmiTamburini U., Fundamentals and applications of field/current assisted sintering, “Sintering of Advanced Materials”, Woodhead Publishing, (2010).
  • [19] Anselmi-Tamburini U., Kodera Y., Gasch M., Unuvar C., Munir Z. A., Ohyanagi M., Johnson S. M., “Synthesis and characterization of dense ultra-high temperature thermal protection materials produced by field activation through spark plasma sintering (SPS): I. Hafnium Diboride”, Journal of Materials Science, 41:3097-3104,(2006).
  • [20] Wang H., Lee S. H., Kim H. D., Chamberlain A., “Nano‐ Hafnium Diboride Powders Synthesized Using a Spark Plasma Sintering Apparatus”, Journal of the American Ceramic Society, 95, (2012).
  • [21] Yuan H., Li J., Shen Q., Zhang L., “In situ synthesis and sintering of ZrB2 porous ceramics by the spark plasma sintering–reactive synthesis (SPS–RS) method”, International Journal of Refractory Metals and Hard Materials, 34:3-7,(2012).
  • [22] Wang H., Lee S.-H., Feng L., “HfB2–SiC composite prepared by reactive spark plasma sintering”, Ceramics International, 40:11009-11013,(2014).
  • [23] Wu W.W., Estili M., Nishimura T., Zhang G.J., Sakka Y., “Machinable ZrB2–SiC–BN composites fabricated by reactive spark plasma sintering”, Materials Science and Engineering: A, 582:41-46,(2013).
  • [24] Xiang M., Gu J., Ji W., Xie J., Wang W., Xiong Y., Fu Z., “Reactive spark plasma sintering and mechanical properties of ZrB2-SiC-ZrC composites from ZrC-B4C-Si system”, Ceramics International, 44:8417-8422,(2018).
  • [25] Shahedi Asl M., Nayebi B., Ahmadi Z., Parvizi S., Shokouhimehr M., “A novel ZrB2–VB2–ZrC composite fabricated by reactive spark plasma sintering”, Materials Science and Engineering: A, 731:131-139,(2018).
  • [26] Monteverde F., “Progress in the fabrication of ultra-hightemperature ceramics: “in situ” synthesis, microstructure and properties of a reactive hot-pressed HfB2–SiC composite”, Composites Science and Technology, 65:1869-1879,(2005).
  • [27] Jun Lee S., Son Kang E. U. L., Su Baek S., Kim D. K., “Reactive Hot Pressing and Oxidation Behavior of HfBased Ultra-High-Temperature Ceramics”, Surface Review and Letters (SRL), 17:215-221,(2010).
  • [28] Bale C. W., Bélisle E., Chartrand P., Decterov S. A., Eriksson G., Gheribi A. E., Hack K., Jung I. H., Kang Y. B., Melançon J., Pelton A. D., Petersen S., Robelin C., Sangster J., Spencer P., Van Ende M. A., “FactSage thermochemical software and databases, 2010–2016”, Calphad, 54:35-53,(2016).
  • [29] Evans A. G., Charles E. A., “Fracture Toughness Determinations by Indentation”, Journal of the American Ceramic Society, 59:371-372,(1976).
  • [30] Munir Z. A., Anselmi-Tamburini U., Ohyanagi M., “The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method”, Journal of Materials Science, 41:763-777,(2006).
  • [31] Angerer P., Artner W., Neubauer E., Yu L. G., Khor K. A., “Residual stress in spark-plasma-sintered and hot-pressed tantalum samples determined by X-ray diffraction methods”, International Journal of Refractory Metals and Hard Materials, 26:312-317,(2008).
  • [32] Wang H., Fan B., Feng L., Chen D., Lu H., Xu H., Wang C.-A., Zhang R., “The fabrication and mechanical properties of SiC/ZrB2 laminated ceramic composite prepared by spark plasma sintering”, Ceramics International, 38:5015-5022,(2012).
  • [33] Telle R., Sigl L. S., Takagi K., “Boride-Based Hard Materials”, “Handbook of Ceramic Hard Materials”, (2000).
  • [34] Ran S., Van der Biest O., Vleugels J., “In situ platelettoughened TiB2–SiC composites prepared by reactive pulsed electric current sintering”, Scripta Materialia, 64:1145-1148,(2011).
  • [35] Rangaraj L., Divakar C., Jayaram V., “Fabrication and mechanisms of densification of ZrB2-based ultra high temperature ceramics by reactive hot pressing”, Journal of the European Ceramic Society, 30:129-138,(2010).
  • [36] Rangaraj L., Suresha S., Canchi D., Jayaram V., “LowTemperature Processing of ZrB2-ZrC Composites by Reactive Hot Pressing”, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 39:1496-1505,(2008).
  • [37] Sokolov P. S., Mukhanov V. A., Chauveau T., Solozhenko V. L., “On melting of silicon carbide under pressure”, Journal of Superhard Materials, 34:339-341,(2012).
  • [38] Davis S. G., Anthrop D. F., Searcy A. W., “Vapor Pressure of Silicon and the Dissociation Pressure of Silicon Carbide”, The Journal of Chemical Physics, 34:659- 664,(1961).
  • [39] Yudin B. F., Borisov V. G., “Thermodynamic analysis of dissociative volatilization of silicon carbide”, Refractories, 8:499-504,(1967).
  • [40] Takeuchi T., Takahashi M., Ado K., Tamari N., Ichikawa K., Miyamoto S., Kawahara M., Tabuchi M., Kageyama H., “Rapid Preparation of Lead Titanate Sputtering Target Using Spark‐Plasma Sintering”, Journal of the American Ceramic Society, 84:2521-2525,(2004).
  • [41] Özerdem E., Ayas E., “Fabrication and microstructural stability of spark plasma sintered Al2O3/Er3Al5O12 eutectic”, Ceramics International, 41:12869- 12877,(2015).
  • [42] Gürcan K., Ayas E., “In-situ synthesis and densification of HfB2 ceramics by the spark plasma sintering technique”, Ceramics International, 43:3547-3555,(2017).
  • [43] Zhu S., Fahrenholtz W. G., Hilmas G. E., “Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride–silicon carbide ceramics”, Journal of the European Ceramic Society, 27:2077-2083,(2007).
  • [44] Zapata-Solvas E., Jayaseelan D. D., Lin H. T., Brown P., Lee W. E., “Mechanical properties of ZrB2- and HfB2- based ultra-high temperature ceramics fabricated by spark plasma sintering”, Journal of the European Ceramic Society, 33:1373-1386,(2013).
  • [45] Swanson P. L., Fairbanks C. J., Lawn B. R., Mai Y.-W., Hockey B. J., “Crack-Interface Grain Bridging as a Fracture Resistance I, Mechanism in Ceramics: I, Experimental Study on Alumina”, Journal of the American Ceramic Society, 70:279-289,(1987).
  • [46] Quanli J., Haijun Z., Suping L., Xiaolin J., “Effect of particle size on oxidation of silicon carbide powders”, Ceramics International, 33:3 09-313,(2007).
  • [47] Hu P., Guolin W., Wang Z., “Oxidation mechanism and resistance of ZrB2–SiC composites”, Corrosion Science, 51:2724-2732,(2009).
  • [48] Monteverde F., “Beneficial effects of an ultra-fine α-SiC incorporation on the sinterability and mechanical properties of ZrB2”, Applied Physics A, 82:329- 337,(2006)
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

Gizli Anlamsal Analiz ile Arama Motorları için Anahtar Kelime Çıkarma

Fahrettin HORASAN

SiC partikül boyutunun yerinde sentezleme yöntemi ile üretilen $;HfB_2$-SiC kompozitlerinin mikroyapısal, mekanik ve oksidasyon özellikleri üzerine etkisi

Kübra GÜRCAN, Bora DERİN, Erhan AYAS

Numerical comparison of planar and microtubular solid oxide fuel cells

Mustafa İLBAŞ, Fethi Mustafa ÇİMEN, Berre KÜMÜK

Soğutma Derece-Saat Yöntemini Kullanarak Bina Soğutma Yüklerinin Hesaplanması

Mustafa ERTÜRK, Yusuf ÇAY

Erzurum İstasyonunun Standartlaştırılmış Yağış Evapotranspirasyon İndeksi Ve Bütünleşik Kuraklık İndeksi Kullanılarak Kuraklık Analizi

Emre TOPÇU, Fatih KARAÇOR

AZ91 Mg Alaşımı Üzerine Sol-Jel Yöntemi ile Yapılan Ta2O5 Kaplamalarda Daldırma Sayısının Kaplamaların Morfolojisine Etkisi

Canser GÜL, Sevda ALBAYRAK, HANİFİ ÇİNİCİ

Effect of SiC Particle Size on the Microstructural, Mechanical and Oxidation Properties of In-situ Synthesized HfB2-SiC Composites

Kubra GÜRCAN, Bora DERİN, ERHAN AYAS

Numerical Comparison of Planar and Micro-Tubular Solid Oxide Fuel Cells

Mustafa İLBAŞ, Fethi Mustafa ÇİMEN, Berre KÜMÜK

Kolofan Katkılı Borlu Bileşiklerle Emprenyenin Doğu Kayını (Fagus orientalis Lipsky) Odununun Yanma Direncine Etkisi

Taner AŞÇI, Hakan KESKİN

İnsansız Hava Aracı ile Üretilen Sayısal Yükseklik Modeli (Sym) ile Google Earth ve Hgm Küre Verilerinin Karşılaştırılması

Muhammet Mustafa EROĞLU, Ömer Gökberk NARİN