Limon Kabuğu Ekstratı Konsantrasyonunun Nano Ölçekli Fe/Fe3O4 Sentezine Etkisi

Demir nanopartiküller; küçük partikül boyutu, yüzey özellikleri, düşük toksisitesi, yüksek manyetizması ve bilimdeki kapsamlı uygulamaları nedeniyle diğer nanomalzemelere göre daha fazla ilgi çekmiştir. Bu nanopartiküllerin yeşil sentezi için bitki özleri, mikroorganizmalar ve tarımsal atık ürünler kullanılmaktadır. Yeşil sentez, bitkilerden ve mikroorganizmalardan elde edilen metabolitleri indirgeyici ve kapatıcı ajanlar olarak kullanır. Ayrıca sert kimyasallar içermemesi, toksik olmayan reaktiflerin kullanılması, biyouyumlu ve çevre dostu olması nedeniyle diğer sentez yöntemlerine göre avantaj sağlamaktadır. Bu çalışmada, demir-demir oksit (Fe-Fe3O4) nanopartikülleri limon ekstratı kullanılarak sentezlenmiş ve optimum Fe:Ekstrakt oranı belirlenmiştir. Nanopartiküller, X-ışını difraktometresi (XRD) , UV-vis Spektrofotometre ve Taramalı Elektron Mikroskobu (SEM) ile karakterize edilmiştir. Demir nanopartiküllerinin UV-vis absorpsiyon spektrumu 250-350 nm aralığında bir tepe göstermiştir. XRD analiz sonuçları, ürünün bir Fe-Fe3O4 karışımı olduğunu doğrulamıştır. SEM analizi sonuçlarına göre 1: 2 (Fe:Ekstrat) oranında en büyük partikül boyutu 159 nm olduğu görülürken, en küçük partikül boyutu 66.68 nm olarak kaydedilmiştir. Artan limon özünün topaklaşmaya neden olduğu gözlenmiştir. Sonuç olarak, tarımsal atık olan limon kabuğunun yeşil sentezi düşük maliyetli, çevre dostu ürünler oluşturmaktadır.

Effect of Lemon Peel Extract Concentration on Nano Scale Fe/Fe3O4 Synthesis

Iron nanoparticles has attracted more attention than other nanomaterials for its small particle size, high magnetism, low toxicity, surface properties and its extensive applications in science. Plant extracts, microorganisms and agricultural waste products are used for the green synthesis of these nanoparticles. Green synthesis uses metabolites obtained from plants and microorganisms as reducing and covering agents. In addition, it provides an advantage over other synthesis methods because it does not contain harsh chemicals, uses non-toxic reagents, is biocompatible and environmentally friendly. In this study, iron-iron oxide (Fe-Fe3O4) nanoparticles (LP- Fe NPs) were synthesized using lemon peel extract and optimum Fe:Lemon peel extract (Fe: LP exract) ratio was determined. Nanoparticles were characterized by X-ray diffractometer (XRD), UV-vis Spectrophotometer and Scanning Electron Microscope (SEM). The UV-vis absorption spectrum of iron nanoparticles showed a peak in the 250-350 nm range. XRD analysis results confirmed that the product is a Fe-Fe3O4 mixture. According to SEM analysis results, the largest particle size according to the 1:2 ratio was recorded as 159 nm. The smallest particle size was recorded as 66.68 nm. It has been observed that the increased lemon peel extract causes agglomeration. As a result, green synthesis of lemon peel, which is agricultural waste; It creates low-cost, environmentally friendly products.

___

  • [1] http://www.fao.org/faostat/en/#data/QC, “Food and Agriculture Organization (FAO), 2018 Production Data”, Available from:, Date of access: 06.03.2021
  • [2] Kurt Ş. “Batı akdeniz tarımsal araştırma enstitüsü Türkiye turunçgil çeşit geliştirme programı”, T.C. Tarım ve Orman Bakanlığı Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü Batı Akdeniz Tarımsal Araştırma Enstitüsü, Antalya, 1-10, (2020).
  • [3] Raghavan S., Gurunathan J., “Citrus Species- a Golden Treasure box of metabolites that is beneficial against disorders”, Journal of Herbal Medicine, 28 : 100438, (2021).
  • [4] Hanif M., Nazri M., Sapawe N., “A short review on green synthesis of iron metal nanoparticles via plants extracts”, Materials Today Proceddings, 31: A48-A53, (2020).
  • [5] Frey N.A., Sun S., “Magnetic Nanoparticle for Information Storage Applications” ,Inorganic nanoparticles: synthesis, applications, and per-spective, Taylor and francis group. ,USA, (2011).
  • [6] Ebrahiminezhad A., Davaran S., Rasoul-Amini S. , et al., “Synthesis, characterization and anti-listeria monocytogenes effect of amino acid coated magnetite nanoparticles”, Current Nanoscience,. 8 (6): 868-874, (2012).
  • [7] Ebrahiminezhad A., Barzegar Y., Ghasemi Y., et al., “Green synthesis and characterization of silver nanoparticles using Alcea rosea flower extractas a new generation of antimicrobials”, Chemical Industry and Chemical Engineering Quarterly., 23 (1): 31-37, (2017).
  • [8] Mahakham W. , Theerakulpisut P., Maensiri S., et. al,”Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination”, Science of Total Environment. 573 : 1089-1102, (2016).
  • [9] Xu P., Zeng G.M.,. Huang D.L., et al., “Use of ironoxide nanomaterials in waste water treatment: a review”, Science of Total Environment ,424 : 1-10, (2012).
  • [10] Ehrampoush M.H., Miria M., Salmani M.H., et al., “Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract”, Journal of Environmental Health Science and Engineering., 13(84): 1-7, (2015).
  • [11] Khalil A., Ovais M., Ullah I., et al., “Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia thea (Osbeck.) and their pharmacognostic properties”, Green Chemistry Letters Reviews. 10:186-201, (2017).
  • [12] Ahmed, E.M., “Hydrogel: preparation, characterization, and applications: a review”.Journal of Advanced Research ,6: 105–121, (2015).
  • [13] Bhuiyan M. , Miah M., Paul S. et al.,“Green synthesis of iron oxide nanoparticle using Carica papaya leaf extract:application for photocatalytic degradation of remazol yellow RR dye and antibacterial activity”; Heliyon, 6 (e04603): 1-13, (2020).
  • [14] Peralta-Videa J.R., Huang, Y., Parsons, J.G.,et al., “Plant-based green synthesis of metallicnanoparticles: scientific curiosity or a realistic alternative to chemical synthesis” , Nanotechnology for Environmental Engineering volume , 1 : 1–29, (2016).
  • [15] Kumar B., Smita K., Galeas S., “Characterization and application of biosynthesized iron oxide nanoparticlesusingCitrus paradisipeel: A sustainable approach”, Inorganic Chemistry Communications,119 :108116 , (2020).
  • [16] Wei Y., Fang Z., Zheng L., “Green synthesis of Fe nanoparticles using Citrus maxima peels aqueous extracts”, Materials Letters, 185: 384–386, (2016).
  • [17] Machado S., Grosso J.P., Nouws H.P.A., “Utilization of food industry wastes for the production of zero-valentiron nanoparticles”, Science of the Total Environment, 496: 233–240 , (2014).
  • [18] Jain R., Mendiratta S., Kumar L., Srivastava A., 456–89, “Green synthesis of iron nanoparticles using Artocarpus heterophyllus peel extract and their application as a heterogeneous Fenton-like catalyst for the degradation of Fuchsin Basic dye”, Current Research in Green and Sustainable Chemistry, 4: 100086, (2021).
  • [19] Phan C M, Nguyen H. M., “Role of Capping Agent in Wet Synthesis of Nanoparticles” Journal Of Physical Chemistry A, 121: 3213−3219, (2017).
  • [20] Sadhasivam S., Vinayagam V., Balasubramaniyan M., “Recent advancement in biogenic synthesis of iron nanoparticles”, Journal of Molecular Structure 1217: (128372): 1-8, (2020).
  • [21] Mohan, S., Singh, Y., Verma, D., Hasan, S., “Synthesis of CuO nanoparticles through green route using Citrus limon juice and its application as nanosorbent for Cr(VI) remediation: Process optimization with RSM and ANN-GA based model”, Process Safety and Environmental Protection, 96: 156 – 166, (2015).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ