Isıl İşlem Görmüş Ahşap Kullanılarak Çeşitli Koşullar Altında Yapışma Performansının İncelenmesi

An Investigation of Adhesion Performance Under Various Conditions Using Heat-Treated Wood

In this study, the adhesion performance of oak (Quercus petrea Liebl.) And Scotch pine (Pinus Silvestris L.) wood samples that were heat treated and glued with 1K-PUR adhesive were kept under different conditions (A1-A4-A5) and moisture contents (20°C /% 35, 20°C /%65 ve 20°C /% 95), and then the adhesion performance was investigated.Rough sized pieces of both types of wood were heat treated at 195°C for 2 hours. Test samples were prepared from untreated and heat treated blanks (DIN EN 204). Tensile tests according to DIN EN 204 were applied to samples kept at 20°C/35%, 20°C/65% and 20°C/95% temperature and relative humidity, respectively, and the adhesion performance was determined in three climatic conditions.At the end of these tests, it was found that the holding environment and climatic conditions have a significant effect on the adhesion resistance. It was observed that the samples that were kept under A1 conditions and tested had wood rupture (error) between 70% and 100%, and the samples tested after holding in A4 and A5 conditions mostly broke off from the glue joint.

___

  • [1] Vanya, C. “Damage problems in glued laminated timber”, Drewno. Pr. Nauk. Donies. Komunik, 55(188):115-128, (2012).
  • [2] Eckelman, C. A. “The shrinking and swelling of wood and its effect on furniture.” Purdue University Cooperative Extension Service. Pub. FNR 163. West Lafayette, IN (1998).
  • [3] Dietsch, P., Franke, S., Franke, B., Gamper, A., Winter, S., “Methods to determine wood moisture content and their applicability in monitoring concepts.” Journal of Civil Structural Health Monitoring, 5(2): 115–127, (2015).
  • [4] Volkmer, T., Schmidt, J.A., Kranitz, K., Niemz, P., “Untersuchungen zum Einfluss der Klebstoffart auf den Diffusionswiderstand von Holzverklebungen.” Bauphysik, 34 (2): 55-60, (2012).
  • [5] Altunok, M., Wetzig, M., Niemz, P., “Verklebtes Thermoholz im Feuchtraum verwenden: Einfluss won Wärmebehandlung, Holzfeuchte und Prüflagerfolge auf die Zugescherfestigkeit von 1K-PUR Verbindungen”, Holz-Zentralblatt, Stuttgart, 20: 519-520, (2012).
  • [6] Elstermann, F., “Einfluss der Oberflächenqualität des Holzes auf die Verklebungsgüte.” Dresden: Berufsakademie Sachsen, Staatliche Studienakademie Dresden, Holztechnik, Dissertation/Diplomarbeit (2011).
  • [7] Hering, S., “Charakterisierung und Modellierung der Materialeigenschaften von Rotbuchenholz zur Simulation von Holzverklebungen.” DISS. ETH Nr. 19903, ETH Zürich (2011).
  • [8] Clad W., “Über das Wesen einer Verklebung und die Fugenelastizität ausgehärteter Leimfugen bei Holzverleimungen. Dissertation”, Technische Hochschule Stuttgart (1964).
  • [9] Brockmann W., Geiß P.L., Klingen, J., Schröder, B.: Klebtechnik: Klebstoffe, Anwendungen und Verfahren, WILEY-VCH (2005).
  • [10] Clauß S., Joscak M., Niemz, P., “Thermal stability of glued wood joints measured by shear tests.”, European Journal of Wood and Wood Products, 69(1): 101-111, (2011a).
  • [11] Clauß S., Dijkstra D.J., Gabriel J., Kläusler O., Matner M., Meckel W. Niemz P., “Influence of the chemical structure of PUR prepolymers on thermal stability.”, International Journal of Adhesion and Adhesives, 31(6): 513-523, (2011b).
  • [12] Sahin Kol H., Ozbay G., Altun S., “Shear strength of heat-treated tali (Erythrophleum ivorense) and iroko (Chlorophora excelsa) woods, bonded with various adhesives.”, BioResources, 4(4): 1545–1554, (2009).
  • [13] Dilik T. Hiziroglu S., “Bonding strength of heat treated compressed Eastern redcedar wood.”, Materials and Design, 42: 317–320, (2012).
  • [14] Esteves B. Pereira H., “Wood modification by heat treatment: A review.” BioResources, 4(1): 370-404, (2009).
  • [15] Boonstra M. J., Tjeerdsma B. F., Groeneveld H.A.C., Thermal modification of non-durable wood species. Part 1, The Plato technology: Thermal modification of wood. International Research Group on Wood Preservation, Document no. IRG/WP 98-40123, Stockholm, Sweden (1998).
  • [16] Paul W., Ohlmeyer M., Leithoff H., “Thermal modification of OSB-strands by a one-step heat pre-treatment-Influence of temperature on weight loss, hygroscopicity and improved fungal resistance.”, Holz als Roh- und Werkstoff, 65: 57-63, (2007).
  • [17] Kägi A., Niemz P., Mandallaz D., “Einfluss der Holzfeuchte und ausgewählter technologischer Parameter auf die Verklebung mit 1K-PUR Klebstoffen unter extremen klimatischen Bedingungen.”, Holz als Roh- und Werkstoff, 64: 261–268, (2006).
  • [18] Alén R., Kotilainen R., Zaman A., “Thermochemical behavior of Norway spruce (Picea abies) at 180–225°C.”, Wood Science and Technology, 36(2): 163–171, (2002).
  • [19] Sivonen H., Maunu S.L., Sundholm F., Jämsä S., Viitaniemi P., “Magnetic resonance studies of thermally modified wood.”, Holzforschung, 56(6); 648–654, (2002).
  • [20] Perçin O., Sofuoğlu S.D., Uzun O., “Effects of boron impregnation and heat treatment on some mechanical properties of oak (Quercus petraea Liebl.) wood.”, BioResources, 10(3): 3963-3978, (2015).
  • [21] Akyildiz M.H., Ates S., “Effect of heat treatment on equilibrium moisture content (EMC) of some wood species in Turkey.” Research Journal of Agriculture and Biological Sciences, 4(6): 660-665, (2008).
  • [22] Gündüz G., Niemz P., Aydemir D., “Changes in specific gravity and equilibrium moisture content in heat-treated fir (Abies nordmanniana subsp. bornmülleriana Mattf.) wood.” Drying Technology, 26: 1135–1139, (2008).
  • [23] Ahmed S.A., Morén T., “Moisture properties of heat-treated Scots pine and Norway spruce sapwood impregnated with wood preservatives.”, Wood and Fiber Science, 44(1): 85-93, (2012).
  • [24] Uzun O., Percin O., Altınok M., Kureli I.,: “Bonding strength of some adhesives in heat-treated hornbeam (Carpinus betulus L.) wood used of interior and exterior decoration.” BioResources, 11(3): 7686-7696, (2016).
  • [25] Korkut S., Kocaefe D., “Effect of heat treatment on wood properties.” Düzce University, Journal of Forestry, 5(2): 11-34, (2009).
  • [26] Sernek M., Boonstra M., Pizzi A., Despres A., Gérardin P., “Bonding performance of heat treated wood with structural adhesives.” Holz als Roh- und Werkstoff, 66(3): 173–180, (2008).
  • [27] Sahin Kol, H., Özbay, G. “Adhesive bond performance of heat-treated wood at various conditions.” Journal of Environmental Biology, 37: 557-564, (2016).
  • [28] Humphrey P, E., Ren S., “Bonding kinetics of thermosetting adhesive systems used in wood-based composites: the combined effect of temperature and moisture content.” Journal of Adhesion Science and Technology, 3(1): 397-413, (1989).
  • [29] Poncsák S., Shi S.Q., Kocaefe D., Miller G., “Effect of thermal treatment of wood lumbers on their adhesive bond strength and durability.” Journal of Adhesion Science and Technology, 21(8): 745–754, (2007).
  • [30] Percin O., Uzun O.,: “Determination of bonding strength in heat treated some wood materials”. SDU Faculty of Forestry Journal, 15: 72-76, (2014).
  • [31] Esen R., Özcan C., “The effects of heat treatment on shear strength of oak (Quercus petraea L.) wood.” SDU Faculty of Forestry Journal, 13: 150-154, (2012).
  • [32] Chow S.Z., “Infrared spectral characteristics and surface inactivation of wood at high temperatures.” Wood Science and Technology, 5(1): 27–39, (1971).
  • [33] Kariz M., Sernek M., “Bonding of heat-treated spruce with phenol-formaldehyde adhesive.” Journal of Adhesion Science and Technology, 24 (8-10): 1703–1716, (2010).
  • [34] Horvath N., Molnar S., Niemz P., “Untersuchungen zum Einfluss der Holzfeuchte auf ausgewählte Eigenschaften von Fichte, Eiche und Rotbuche.” Holztechnologie, 49 (1): 10-15, (2008).
  • [35] Schrödter A., Niemz P., “Investigation on the failure behavior of glue joints at high temperatures and relative humidity.” Holztechnologie, 47(1): 24-32, (2006).
  • [36] Niemz P., Allenspach K., “Untersuchungen zum Einfluss von Temperatur und Holzfeuchte auf das Versagensverhalten von ausgewählten Klebstoffen bei Zugscherbeanspruchung.” Bauphysik, 31(5): 296-304, (2009).
  • [37] Altunok M., Percin O. Wetzig M., “Untersuchung des strukturellen Verhaltens von Furnierschichtholz (LVL) unter verschiedenen klimatieschen Bedingungen.” Holztechnologie, 54(6): 18-22, (2013a).
  • [38] Altunok M., Percin O., Wetzig M., Niemz P. “Eigenschaften von Schichtholz (LVL) aus wärmebehandelten Furnieren verschiedener Holzarten.” Holztechnologie, 54(4): 5-9, (2013b).
  • BS EN 205. Adhesives. Wood adhesives for non-structural applications. Determination of tensile shear strength of lap joints, British Standard (2003).
  • DIN EN 204: Classification of thermoplastic wood adhesives for non-structural applications.
  • TS 2472: Wood - Determination of Density for Physical and Mechanical Tests, TSE, Ankara, Turkey (1976).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ