Çift Fazlı (α + M) Küresel Grafitli Dökme Demirlerde Martenzit Hacim Oranı-Mekanik Özellikler-Dislokasyon Yoğunluğu Arasındaki İlişkilerin İncelenmesi

Bu çalışmada, çift fazlı (α+M) küresel grafitli dökme demirlerde (ÇF-KGDD) martenzit hacim oranı-mekanik özellikler-dislokasyon yoğunluğu arasındaki ilişkiler incelenmiştir. Farklı faz hacim oranlarında martenzit ve ötektoid öncesi ferritten oluşan çift fazlı mikroyapılar 770°C, 775°C ve 780°C ara kritik kısmi östenitleme sıcaklıklarından oda sıcaklığındaki suda soğutularak üretilmiştir. Mikroyapı karakterizasyon çalışmaları optik mikroskop, taramalı elektron mikroskobu (SEM) ve X-Işını kırınım (XRD) analizi teknikleri kullanılarak gerçekleştirilmiştir. Mekanik özelliklerin belirlenmesi için çekme ve sertlik testleri yapılmıştır. Dislokasyon yoğunluğu XRD desenlerinden faydalanılarak Williamson-Hall (W-H) eşitliği ile hesaplanmıştır. Artan arakritik östenitleme sıcaklığıyla martenzit hacim oranı ve dislokasyon yoğunluğunun arttığı belirlenmiştir. Martenzit hacim oranı arttıkça sertlik, akma ve çekme dayanımı arttığı, toplam % uzama azaldığı ve kırılma modunun sünekten-gevreğe geçtiği gözlemlenmiştir.

Investigation of Correlations among Martensite Volume Fraction-Mechanical Properties-Dislocation Density in Dual Phase (α + M) Ductile Cast Irons

In this study, the correlations among martensite volume fraction-mechanical properties-dislocation density was investigated in dual-phase (α+M) ductile cast irons (DP-DCI). Dual-phase microstructures consisting of martensite and proeutectoid ferrite in different phase volume fractions were produced by cooling in the water at room temperature from 770°C, 775°C, and 780°C intercritical austenitizing temperatures. Microstructure characterization studies were performed using an optical microscope, scanning electron microscope (SEM), and X-ray diffraction (XRD) analysis techniques. Tensile and hardness tests have been conducted to determine the mechanical properties. Dislocation density was calculated via Williamson-Hall (W-H) equation by using XRD patterns. It was determined martensite volume fraction and dislocation density enhanced with increasing intercritical austenitizing temperature. As the martensite volume fraction increased, that the hardness, yield, and tensile strength increased, the total % elongation decreased and the fracture mode changed from ductile to brittle were observed.

___

  • [1] Podgornik B, Vizintin J, Thorbjornsson I, Johannesson B, Thorgrimsson JT, Martinez Celis M, et al, “Improvement of ductile iron wear resistance through local surface reinforcement,” Wear, 274–275: 267–273, (2012).
  • [2] Khameneh MJ, Azadi M, “Evaluation of high-cycle bending fatigue and fracture behaviors in EN-GJS700-2 ductile cast iron of crankshafts,” Eng. Fail. Analysis, 85: 189–200, (2018).
  • [3] Melado AC, Nishikawa AS, Goldenstein H, Giles MA, Reed PAS, “Effect of microstructure on fatigue behaviour of advanced high strength ductile cast iron produced by quenching and partitioning process,” Int. J. Fatigue, 104: 397–407, (2017).
  • [4] Erdogan M, Kilicli V, Demir B, “The Influence of Austenite Dispersion on Phase Transformation during Austempering in Ductile Cast Iron with Dual Matrix Structure”, International Journal of Materials Research, 99(7): 751-760, (2008).
  • [5] Uyar A., Sahin O., Nalcaci B., Kilicli V., “Effect of Austempering Times on Microstructures and Mechanical Properties of Dual-Matrix Structure Austempered Ductile Iron (DMS-ADI)”, International Journal of Metalcasting, In Press, 2021.
  • [6] Ovali I, Kilicli V, Erdogan M, “Effect of microstructure on fatigue strength of intercritically austenitized and austempered ductile irons with dual matrix structures,” ISIJ Int., 53(2): 375–381, (2013).
  • [7] Kilicli V, Erdogan M, “Tensile properties of partially austenitised and austempered ductile irons with dual matrix structures,” Mater. Sci. Technol.,22(8): 919–928, (2006).
  • [8] Basso A, Sikora J, Martínez R, “Analysis of mechanical properties and its associated fracture surfaces in dual-phase austempered ductile iron,” Fatigue Fract. Eng. Mater. Struct., vol. 36(7): 650–659, (2013).
  • [9] Basso A, Caldera M, Massone J, “Development of high silicon dual phase austempered ductile iron,” ISIJ Int., 55(5): 1106–1113, (2015).
  • [10] Murcia SC, Paniagua MA, Ossa EA, “Development of as-cast dual matrix structure (DMS) ductile iron,” Mater. Sci. Eng. A, 566: 8–15, (2013).
  • [11] Sahin Y, Erdogan M, Cerah M, “Effect of martensite volume fraction and tempering time on abrasive wear of ferritic ductile iron with dual matrix,” Wear, vol. 265(1–2): 196–202, (2008).
  • [12] Kilicli V, Erdogan M, “The strain-hardening behavior of partially austenitized and the austempered ductile irons with dual matrix structures,” J. Mater. Eng. Perform., 17(2): 240–249, (2008).
  • [13] Soliman M, Nofal A, Palkowski H, “Effect of Thermo-mechanical Processing on Structure and Properties of Dual-Phase Matrix ADI with Different Si-Contents,” Int. J. Met., 14(3): 853–860, (2020).
  • [14] Basso A, Caldera M, Chapetti M, Sikora J, “Mechanical characterization of dual phase austempered ductile iron,” ISIJ Int., 50(2): 302–306, (2010).
  • [15] Vázquez-Gómez O, Barrera-Godínez JA, Vergara-Hernández HJ, “Kinetic study of austenite formation during continuous heating of unalloyed ductile iron,” Int. J. Miner. Metall. Mater., 22(1): 27–31, (2015).
  • [16] Elliot R, Cast Iron Technology, Butterwort. London, (1988).
  • [17] Bahmani M, Elliott R, Varahram N. The austempering kinetics and mechanical properties of an austempered Cu-Ni-Mo-Mn alloyed ductile iron. J. Mater. Sci., 32(47): 83–91, (1997).
  • [18] Kilicli V, Erdogan M, “The nature of the tensile fracture in austempered ductile iron with dual matrix microstructure,” J. Mater. Eng. Perform., 19(1): 142–149, (2010).
  • [19] Xiao L, Zhong F,Zhang J,Zhang M,Zhang, M,Kang M, Guo Z.“Lattice parameter variation with carbon content of martensite” Phys.Rev.B., 52(14): 9970-9978, (1995).
  • [20] Akl AA, Hassanien AS, “Microstructure characterization of Al-Mg alloys by X-ray diffraction line profile analysis,” Int. J. Adv. Res., 2(11): 1–9, (2014).
  • [21] Bilgin V, Kose S, Atay F, Akyuz I, “The effect of substrate temperature on the structural and some physical properties of ultrasonically sprayed CdS films,” Mater. Chem. Phys., 94(1): 103–108, (2005).
  • [22] Macchi J, Gaudez S, Geandier G, Teixeira J, Denis S, Bonnet F, et al., “Dislocation densities in a low-carbon steel during martensite transformation determined by in situ high energy X-Ray diffraction,” Mater. Sci. Eng. A, 800:140249-57, (2021).
  • [23] Sousa TG, Diniz SB, Pinto AL, Brandao LP, “Dislocation density by X-ray diffraction in α brass deformed by rolling and ECAE,” Mater. Res., 18: 246–249, (2015).
  • [24] Varel G, Güral A, “Eş Kanallı Açısal Presleme ve Toz Metalurjisi Yöntemiyle İşlenmiş Elementel Tozlardan Yaşlandırılabilir Al - % 4Cu Alaşımların Üretimi Üzerine Bir Çalışma,” Journal of Polytehnic, 19(3): 333–341, (2016).
  • [25] Niu G, Tang Q, Zurob HS, Wu H, Xu L, Gong N, “Strong and ductile steel via high dislocation density and heterogeneous nano/ultrafine grains,” Mater. Sci. Eng. A, 759: 1–10, (2019).
  • [26] Hassanien AS, A. Akl A, “Crystal imperfections and Mott parameters of sprayed nanostructure IrO2 thin films,” Phys. B Condens. Matter, 473: 11–19, (2015).
  • [27] Vershinina T, Leont’eva-Smirnova M, “Dislocation density evolution in the process of high-temperature treatment and creep of EK-181 steel,” Mater. Charact., 125: 23–28, (2017).
  • [28] Kishor R, Sahu L, Dutta K, Mondal AK l, “Assessment of dislocation density in asymmetrically cyclic loaded non-conventional stainless steel using X-ray diffraction profile analysis,” Mater. Sci. Eng. A, 598: 299–303, (2014).
  • [29] Cai M, Chen L, Fang K, Huang H, Hodgson P. The effects of a ferritic or martensitic matrix on the tensile behavior of a nano-precipitation strengthened ultra-low carbon Ti–Mo–Nb steel. Mater. Sci. Eng. A, 801: 140410-17,(2021).
  • [30] Cho CH, Cho H. Effect of dislocation characteristics on electrical conductivity and mechanical properties of AA 6201 wires. Mater. Sci. Eng. A, 809: 140811-24,( 2021).
  • [31] Zhang XX, Lutz A, Andrä H, Lahres M, Gan WM, Maawad E, et al. Evolution of microscopic strains, stresses, and dislocation density during in-situ tensile loading of additively manufactured AlSi10Mg alloy. Int. J. Plast., 139: 1–22, (2021).
  • [32] Garcia-Mateo C, Caballero FG. Ultra-high-strength bainitic steels. ISIJ Int.,vol.45,pp.1736-1740, (2005).
  • [33] Nalçacı B, Kılıçlı V, Erdoğan M, “Östemperlenmiş Küresel Grafitli Dökme Demirlerde XRD Yöntemiyle Yüksek Karbonlu Östenit Faz Hacim Oranını Belirlemede Yüzey Koşullarının Etkisi,” Nevşehir Bilim ve Teknol. Derg., 9: 52–62, (2020).
  • [34] Williamson GK, Hall WH, “X-ray line broadening from filed aluminium and wolfram,” Acta Metall., 1(1): 22–31, (1953).
  • [35] Williamson GK, Smallman RE, “The use of Fourier analysis in the interpretation of X-ray line broadening from cold-worked iron and molybdenum,” Acta Crystallogr., 7(8): 574–581, (1954)
  • [36] Erdogan M, Cerah M, Kocatepe K. Influence of intercritical austenitising, tempering time and martensite volume fraction on the tensile properties of ferritic ductile iron with dual matrix structure. Int J Cast Met Res, 19: 248–53, (2006).
  • [37] Kocatepe K, Cerah M, Erdogan M. The tensile fracture behaviour of intercritically annealed and quenched + tempered ferritic ductile iron with dual matrix structure. Mater Des, 28 :172–181, (2007).
  • [38] Manfredi PF, “Dislocations in Solids,” Il Nuovo Cimento D, 12(2): 279–280, (1990).
  • [39] Nagaraj M, Ravisankar B, “Enhancing the strength of structural steel through severe plastic deformation based thermomechanical treatment,” Mater. Sci. Eng. A, 738(May): 420–429, (2018).
  • [40] Kim JG, Seol JB, Bae JW, Kim HS, “On the mechanistic understanding of annealing-induced strength enhancement of ultrafine-grained high-Mn steel,” Materialia, vol. 13 (July): 100837-42, (2020).
  • [41] Zhou T, Lu J, Hedström P, “Mechanical Behavior of Fresh and Tempered Martensite in a CrMoV-Alloyed Steel Explained by Microstructural Evolution and Strength Modeling,” Metall Mater Trans A Phys Metall Mater Sci, 51: 5077–87 ,(2020).
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ