Biyogranül İçeren Mikrobiyal Kendini Onaran Betonların Aralıklı Islak/Kuru Döngülerde Kendini Onarma Performansı

Beton yapıların bakımına yönelik olarak yürütülen ve yoğun iş gücü isteyen izleme/onarım faaliyetlerinin minimuma indirilebilmesi için, kendini algılayan ve kendini onaran betonların geliştirilmesi önem arz etmektedir. Kendini onaran betonların bir çeşidi beton çatlakları içerisinde kalsiyum karbonat çökelmesini tetikleyen mikrobiyal ajanların kullanılması ile elde edilebilir. Son zamanlarda, nitrat indirgeyen mikroorganizmalardan oluşan biyogranüller yeni nesil mikrobiyal ajanlar olarak sunulmuş ve biyogranül içeren numuneler batık koşullarda iyi bir çatlak onarım performansı göstermiştir. Ancak, bu numunelerin çeşitli beton yapıların maruz kaldığı aralıklı ıslanma koşulları altında performansları bilinmemektedir. Bu çalışmada, biyogranül içeren mikrobiyal harç örneklerinin aralıklı ıslak/kuru koşullar altında kendini onarma performansları sunulmaktadır. Kurum içinde üretilen biyogranüller harç numunelerine çimento ağırlığınca %1.45 w/w (% 1.00 bakteri w/w çimento) dozunda eklenmiş ve çatlatılan harç numunelerindeki 50 ila 600 µm arasındaki çatlakların birbirini izleyen ıslak/kuru şartlarda kendiliğinden iyileşme performansları incelenmiştir. Islak/kuru döngülü 4 haftanın sonunda, biyoharç numunelerinde 400 µm genişliğine kadar olan çatlaklar etkili bir şekilde iyileşmiştir. Daha iyi kendini onarma performansları sayesinde biyoharç numunelerinin su sızdırmazlık geri kazanımı kontrol numunelerine göre %44 daha fazla gerçekleşmiştir. Genel olarak, biyogranüllerin püskürme veya aralıklı ıslanma koşullarına maruz kalan yapılarda uygulanmaya yönelik olarak geliştirilebilecek kendini onaran biyobetonlar için kullanışlı olduğu görülmüştür.

Self-healing performance of biogranule containing microbial self-healing concrete under intermittent wet/dry cycles

Development of self-sensing and self-healing concrete is essential to minimize the labour-intensive monitoring and repair activitiesconducted for the maintenance of concrete structures. A type of self-healing concrete can be achieved by using microbial agentsthat induce calcium carbonate precipitation inside a concrete crack. Recently, biogranules consist of nitrate reducingmicroorganisms were presented as a new generation microbial healing agent and biogranule containing specimens revealed decenthealing performance under completely submerged conditions. However, their performance under intermittent wetting conditions,a common case for various concrete structures, remains unknown. This study presents the self-healing performance of biogranulecontaining biomortar specimens under intermittent wet/dry conditions. In-house produced biogranules were incorporated intomortar specimens at a dose of 1.45% w/w cement (1.00% of bacteria w/w cement) and self-healing performance of crackedspecimens were investigated under alternating wet/dry conditions for a crack width range of 50 to 600 µm. Upon alternating wet/drytreatment for 4 weeks, cracks up to a 400 µm crack width were effectively healed in biomortar specimens. Their water tightnessregain was 44% better than control specimens due to their enhanced healing performance. Overall, non-axenic biogranules appearto be useful in development of self-healing bioconcrete for applications under spraying or intermittent wetting conditions.

___

  • [1] de Rooij M., Van Tittelboom K., De Belie N., Schlangen E. “State-of-the-Art Report of RILEM Technical Committee 221-SHC: Self-healing phenomena in cement-based materials”, RILEM State of the Art Reports vol 11, Springer, Dordrecht, (2013).
  • [2] Ersan Y.C., Gruyaert E., Louis G., Lors C., De Belie N., Boon N., “Self-protected nitrate reducing culture for intrinsic repair of concrete cracks”, Frontiers in Microbiology, 6: 1228, (2015).
  • [3] Ehrlich H., “Geomicrobiology: its significance for geology”, Earth-Science Reviews, 45: 45–60, (1998)
  • [4] Hammes F., Verstraete W., “Key roles of pH and calcium metabolism in microbial carbonate precipitation”, Reviews in Environmental Science and Biotechnology, 1: 3–7, (2002).
  • [5] Ersan Y.C., “Overlooked strategies in exploitation of microorganisms in the field of building materials”, , Ecological Wisdom in Restoration Engineering (EcoWISE), Springer, Singapore, (2019).
  • [6] Palin D., Wiktor V., Jonkers H.M., “A bacteria-based self-healing cementitious composite for application in low-temperature marine environments”, Biomimetics, 2: 13, (2017).
  • [7] Silva F., De Belie N., Boon N., Verstraete W., “Production of non-axenic ureolytic spores for selfhealing concrete applications”, Construction and Building Materials, 93: 1034–1041, (2015).
  • [8] Ersan Y.C., Verbruggen H., De Graeve I., Verstraete W., De Belie N., Boon N., “Nitrate reducing CaCO3 precipitating bacteria survive in mortar and inhibit steel corrosion”, Cement and Concrete Research, 83: 19–30, (2016).
  • [9] Wang J., Snoeck D., Van Vlierberghe S., Verstraete W., De Belie N., “Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete”, Construction and Building Materials, 68: 110–119, (2014).
  • [10] Randall D.J., Tsui T.K.N., “Ammonia toxicity in fish”, Marine Pollution Bulletin, 45: 17–23, (2002).
  • [11] Ersan Y.C., Van Tittelboom K., Boon N., De Belie N., “Nitrite producing bacteria inhibit reinforcement bar corrosion in cementitious materials”, Scientific Reports, 8: 14092(2018).
  • [12] Silva F., Boon N., De Belie N., Verstraete W., “Industrial application of biological self-healing concrete: Challenges and economical feasibility”, Journal of Commercial Biotechnology, 21: 31–38, (2015).
  • [13] Sonmez M., Ersan Y.C., “Production of concrete compatible biogranules for self-healing concrete applications”, Concrete Solutions - 7th International Conference on Concrete Repair, Cluj, Romania, 289: 01002, (2019).
  • [14] Ersan Y.C., Palin D., Yengec-Tasdemir S.B., Tasdemir K., Jonkers H.M., Boon N., De Belie N., “Volume fraction, thickness, and permeability of the sealing layer in microbial self-healing concrete containing biogranules”, Frontiers in Built Environment, 4:70 1– 11, (2018).
  • [15] Ersan Y.C., Silva F.B., Boon N., Verstraete W., De Belie N., “Screening of bacteria and concrete compatible protection materials”, Construction and Building Materials, 88: 196–203, (2015).
  • [16] Wiktor V., Jonkers H.M., “Quantification of crackhealing in novel bacteria-based self-healing concrete”, Cement and Concrete Composites, 33: 763–770, (2011).
  • [17] Wang J., Soens H., Verstraete W., De Belie N., “Selfhealing concrete by use of microencapsulated bacterial spores”, Cement and Concrete Research, 56: 139–152, (2014).
  • [18] Ersan Y.C., Hernandez-Sanabria E., Boon N., De Belie N., “Enhanced crack closure performance of microbial mortar through nitrate reduction”, Cement and Concrete Composites, 70: 159–170, (2016).
  • [19] Tziviloglou E., Wiktor V., Jonkers H.M., Schlangen E., “Bacteria-based self-healing concrete to increase liquid tightness of cracks”, Construction and Building Materials, 122: 118–125, (2016).
  • [20] Khaliq W., Ehsan M.B., “Crack healing in concrete using various bio influenced self - healing techniques”, Construction and Building Materials, 102: 349–357, (2016).
  • [21] Alazhari M., Sharma T., Heath A., Cooper R., Paine K., “Application of expanded perlite encapsulated bacteria and growth media for self-healing concrete”, Construction and Building Materials, 160: 610–619, (2018).
  • [22] Wang J., Dewanckele J., Cnudde V., Van Vlierberghe S., Verstraete W., De Belie N., “X-ray computed tomography proof of bacterial-based self-healing in concrete”, Cement and Concrete Composites, 53: 289– 304, (2014).
  • [23] APHA, AWWA, WEF, Standard Methods for Examination of water and wastewater, 22nd ed., (2012).
  • [24] Ersan Y.C., Akin Y., “Optimizing nutrient content of microbial self-healing concrete”, Life-Cycle Analysis and Assessment in Civil Engineering: Towards an Integrated Vision - Proceedings of the 6th International Symposium on Life-Cycle Civil Engineering, IALCCE 2018, Ghent Belgium, 2241–2246, (2019).
  • [25] Palin, D., Wiktor, V., Jonkers, H. M. “Autogenous healing of marine exposed concrete: characterization and quantification through visual crack closure.” Cement and Concrete Research, 73: 17–24, (2015).
  • [26] F.B. Silva, “Up-scaling the production of bacteria for self-healing concrete application”, PhD Thesis, Ghent University, (2015)
Politeknik Dergisi-Cover
  • ISSN: 1302-0900
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1998
  • Yayıncı: GAZİ ÜNİVERSİTESİ