A Monte-Carlo Simulation for the Estimation of Sideby-Side Loading Events on Oregon Bridges

Obtaining the side-by-side probabilities accurately is a very important procedure during two lane loaded live load factor analysis. To calculate the load factors properly, side-by-side loading events should be investigated very carefully. This study presents a statistical method to investigate the side-by-side events on the Oregon bridges. Numerical simulations were performed for this investigation. These simulations were developed in MATLAB. Gross vehicle weights (GVW) of the trucks were used during the analysis. Monte Carlo simulations were performed to analyze side-by-side loading events. Degree of correlation coefficient of GVW for side-by-side trucks were also obtained from Monte Carlo simulations. 290 bridges located at the prescribed mile markers on Interstate-5 (I-5) southbound on Oregon highways and 1-year of Oregon state-specific weigh-in-motion (WIM) data were used. 75,000 trucks were randomly selected from 1,787,612 trucks that correspond to 1-year WIM data from Woodburn NB traffic site that is located in Oregon. Inverse standard normal distribution functions and cumulative distribution functions of the truck data were generated. With respect to the statistical analysis, side-by-side loading probabilities were found to be smaller than the ones presented in American Association of State Highway and Transportation Officials LRFD calibration.

Oregon Köprülerinde Yan Yana Araç Yüklemelerinin Tahmini için Bir Monte Carlo Simülasyonu

İki şeritli yollardaki hareketli yük katsayılarının tayininde, yan yana araç yüklemelerinin belirlenmesi çok önemli bir aşamadır. Yük katsayıları belirlenirken yan yana araç yüklemeleri çok dikkatli bir şekilde hesaplanmalıdır. Bu çalışmada, Amerika’da bulunan Oregon eyaleti köprülerindeki yan yana araç yüklemelerinin ve brüt araç ağırlıkları korelasyon katsayılarının tayini için istatistiksel bir yöntem sunulmuştur. Bu yöntemde bir Monte Carlo simülasyonu geliştirilmiş ve uygulanmıştır. Hesaplamalar esnasında kamyonların brüt araç ağırlıkları göz önüne alınmıştır. Analizlerde MATLAB programında hazırlanan sayısal simülasyonlar kullanılmıştır. Sayısal simülasyonlarda, Oregon eyaletindeki eyaletler arası I-5 otoyolunda, güneye giden doğrultuda bulunan 290 köprünün bilgileri ve 1,787,612 adet kamyonun, hareket halinde tartma (WIM) verileri kullanılmıştır. Köprü verileri köprülerin I-5 otoyolu üzerindeki geçiş km değerleri, bir diğer deyişle gerçek mil işaretlemeleri ve gerçek köprü uzunluklarıdır. Monte Carlo simülasyonlarında ayrıca 75,000 adet rassal (rastgele seçilmiş) kamyon kullanılmıştır. Bu kamyon verileri kullanılarak standart normal dağılım fonksiyonları ve kümülatif dağılım fonksiyonları hesaplanmıştır. İstatistiksel analizler sonucunda yan yana yükleme olasılıkları, Amerikan otoyol ve taşıma standartlarını belirleyen kurum olan AASHTO’nun hazırladığı köprü tasarım şartnamelerindeki (LRFD) değerlerinden daha düşük olarak bulunmuştur.

___

[1] Moses, F. “Calibration of Load Factors for LRFR Bridge Evaluation.”, NCHRP Report 454, Transportation Research Board, National Research Council, Washington, D.C (2000).

[2] AASHTO. “The Manual for Bridge Evaluation First Edition”, American Association of State Highway and Transportation Officials, Washington, D.C, (2008).

[3] AASHTO. “LRFD Bridge Design Specifications. Customary U.S. Units.”, American Association of State Highway and Transportation Officials, Washington, D.C, (2012).

[4] AASHTO. “Manual for Condition Evaluation and Load and Resistance Factor Rating (LRFR) of Highway Bridges.”, American Association of State Highway and Transportation Officials, Washington, D.C, (2003).

[5] Pelphrey, J., Higgins, C., Sivakumar, B., Groff, R.L., Hartman, B.H., Charbonneau, J.P., Rooper, J.W. and Johnson B.V. “State-Specific LRFR Live Load Factors Using Weigh-in-Motion Data.”, Journal of Bridge Engineering-ASCE, 13: 339-350, (2008).

[6] Zhou, J., Shi, X., Caprani, C.C. and Ruana, X. “Multilane factor for bridge traffic load from extreme events of coincident lane load effects.”, Structural Safety,72:17- 29,(2018).

[7] Yang, X.Y., Gong, J.X., Xu, B.H. and Zhu, J.C. “Evaluation of multi-lane transverse reduction factor under random vehicle load.”, Computers and Concrete, 19(6): 725-736, (2017).

[8] Yanik, A., Higgins, C. and Borello, D. “Development of live load factors for rating of Oregon bridges using WIM load effects and statistical bridge models.”, Technical Report for Oregon Department of Transportation, (2015).

[9] Millam, J. and Zhongguo, Ma. “Single-lane live load distribution factor for decked precast, prestressed concrete girder bridges.”, Transportation Research Record: Journal of the Transportation Research Board ,1928:142-152, (2005).

[10] Enright, B. and O'Brien, E.J. “Monte Carlo simulation of extreme traffic loading on short and medium span bridges.” Structure and Infrastructure Engineering, 9(12):1267-1282,(2013).

[11] Sgambi, L., Garavaglia, E., Basso, N. and Bontempi, F. “Monte Carlo simulation for seismic analysis of a long span suspension bridge.” Engineering Structures,78:100-111,(2014).

[12] Abu Dabous, S. and Al-Khayyat, G. “A Flexible Bridge Rating Method Based on Analytical Evidential Reasoning and Monte Carlo Simulation.” Advances in Civil Engineering, (2018), Article ID 1290632, 13 pages , (2018).

[13] Hacıefendioglu, K., Basaga and H.B.,Banerjee, S. “Probabilistic analysis of historic masonry bridges to random ground motion by Monte Carlo Simulation using Response Surface Method.” Construction and Building Materials, 134: 199-209, (2017).

[14] Ole, O., Ronnquist, A., Naess, A. and Sigbjornsson, R. Estimation of extreme response of floating bridges by Monte Carlo simulation. EURODYN-2014: IX International Conference on Structural Dynamics, Porto-Portugal, 2905-2912, (2014).

[15] Akgul, F. and Frangopol, D.M. “Probabilistic analysis of bridge networks based on system reliability and Monte Carlo simulation.” In: Der Kiureghian, A., Madanat, S., Pestana, J.M. (eds.) Applications of Statistics and Probability in Civil Engineering,Millpress, Rotterdam, 1633–1637,(2003).

[16] Tekin, H., Manici, T. and Singh, V. “An Investigation on Shielding Effect of Bismuth on Lung Ct Scan Using Monte Carlo Simulation.” Politeknik Dergisi , 19: 617- 622, (2016).

[17] Yiğit, A. and Gedikli, A. “Türkiye Kuvvetli Yer Hareketi Kayıtları Kullanılarak Deprem Kaynaklı Kalıcı Zemin Yer Değiştirmelerinin Tahmin Edilmesi.” Politeknik Dergisi, 18(3), 175-181, (2015).

[18] Sivakumar, B., Moses, F., Fu, G. and Ghosn, M. “ Legal Truck Loads and AASHTO Legal Loads for Posting” NCHRP Report 575, Transportation Research Board, National Research Council, Washington, D.C, (2007).

[19] Öncü Davas S. and Alhan C. “Reliability of semi-active seismic isolation under near-fault earthquakes”, Mechanical Systems and Signal Processing, 114: 146- 164, (2019).

[20] Haldar, A. and Mahadevan, S. “Probability, Reliability and Statistical Methods in Engineering Design.” John Wiley & Sons, (2000).

[21] Öncü-Davas,S. “Probabilistic Behavior of Buildings with Semi-active Seismic Isolation Systems under Earthquake Loads.”, PhD Dissertation , Istanbul University, (2018).

[22] Nowak, A.S. “Calibration of LRFD Bridge Design Code.” NCHRP Report 368, Transportation Research Board, National Research Council, Washington, D.C., (1999).

[23] Moses, F.“Calibration of Load Factors for LRFR Bridge Evaluation.” NCHRP Report 454, Transportation Research Board, National Research Council, Washington, D.C. (2001).