Uzun ve kısa çelik lif takviyeli tam ölçekli kirişlerin aderans dayanımı

Bu çalışmada, tek ve karma lif takviyesinin aderans dayanımına etkisini incelemek için altı adet tam ölçekli 200x300x2000 mm boyutlarında betonarme kiriş numunesi dört noktalı eğilme altında test edilmiştir. Bu amaçla, betonarme kiriş numuneleri lif takviyesiz, tek lif (%1 makro çelik lif) ve karma lif (%0.8 makro ve %0.2 mikro çelik lif) takviyeli olarak döküldü. Her bir kiriş numunesi, çekme bölgesinde iki adet donatı çeliğinin açıklık ortasında bindirmeli ekli olarak tasarlanmıştır. Bindirme boyu donatının akma dayanımına ulaşmadan önce bindirme bölgesinde beton örtüsünün yarılmasıyla aderans göçmesi gösterecek şekilde seçilmiştir. Deneysel çalışmada, donatı çapı, bindirme boyu ve donatı detayları sabit tutulurken, lif tip ve kombinasyonları değişken olarak belirlenmiştir. Sonuç olarak, lif takviyeli tüm betonarme kiriş numunelerinin beton ve çelik donatı arasındaki aderans dayanımı, lif takviyesiz kiriş numunelerine göre artış gösterirken, karma lif takviyeli kiriş numunelerinin aderans dayanımı ise en yüksek bulunmuştur. Karma lif takviyeli kiriş numunelerinde sünek göçme gözlemlenmiş ve çoklu çatlak davranışı sonucu genişliği daha az fakat daha fazla sayıda çatlak oluştuğu belirlenmiştir. Ayrıca, lif takviyeli kiriş numunelerinden elde edilen aderans dayanımına ait deneysel verilerin, analitik bulgularla çok iyi bir uyum içinde olduğu bulunmuştur.

Bond strength of full-scale beams with blended short and long steel fiber

In this study, six reinforced concrete (RC) beams with the sizes of 200x300x2000 mm were tested under four-point bending to investigate the effect of single and hybrid fiber reinforced on the bond strength of reinforcing bar. For this purpose, the reinforced beams were cast as no fiber, single fiber (1% macro steel fiber) and hybrid fiber (0.8% macro and 0.2% micro steel fiber) reinforced. Each beam was designed to include two bars in tension, spliced at the center of the span. The splice length was selected so that bars would fail in bond, splitting the concrete cover in the splice region, before reaching the yield point. In experimental work, the diameter of bars, splice length and bar details was selected as constant while the fiber type and combination was variable. Finally, it was found that all beams with steel fiber reinforced had higher bond strength between concrete and steel bar than the beams without steel fiber while the beams with hybrid steel fiber reinforced had highest bond strength. A ductile failure was observed in the hybrid fiber reinforced beam specimens and it was determined that the result of multiple-crack behavior less crack width but more numbers cracked. Moreover, experimental data related to the bond strength obtained from RC beams with steel fiber were in very good agreement with analytical results.

___

  • [1] Tepfers R. "Cracking of concrete cover along anchored deformed reinforcing bars". Magazine of Concrete Research, 31, 3-12, 1979.
  • [2] Tepfers R. A Theory of Bond Applied to Overlapped Tensile Reinforcement Splices for Deformed Bars. PhD Thesis, Chalmers University Technology, 1973.
  • [3] Turk K, Nehdi ML. "Coupled effects of limestone powder and high-volume fly ash on mechanical properties of ECC". Construction and Building Materials, 164, 185-192, 2018.
  • [4] Turk K, Demirhan S. "Effect of limestone powder on the rheological, mechanical and durability properties of ECC". European Journal of Environmental Civil Engineering, 21, 1151-1170, 2017.
  • [5] Bassurucu M, Turk K. "Effect of curing regimes on the engineering properties of hybrid fiber reinforced concrete". The International Journal of Energy & Engineering Sciences, 4(2), 26-42, 2019.
  • [6] Turk K, Oztekin E, Kina C. "Self-compacting concrete with blended short and long fibres: experimental investigation on the role of fibre blend proportion". European Journal of Environmental and Civil Engineering, 2019. doi.org/10.1080/19648189.2019.1686069.
  • [7] Kına C. Yüksek Performanslı Kendiliğinden Yerleşen Karma Lifli Beton Geliştirilmesi. Doktora Tezi, İnönü Üniversitesi, Malatya, Türkiye, 2019.
  • [8] Türk K, Kına C. "Çimento esaslı kompozitlerde karma lif kullanımı". Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23, 671-678, 2017.
  • [9] Ding Y, You Z, Jalali S. "Hybrid fiber influence on strength and toughness of RC beams". Composite Structures, 92, 2083-2089, 2010.
  • [10] Rossi P, Acker P, Malier Y. "Effect of steel fibres at two different stages: The material and the structure". Materials and Structures, 20, 436-439, 1987.
  • [11] Mobasher B, Li CY. "Mechanical properties of hybrid cement-based composites". ACI Materials Journal, 93, 284-292, 1996.
  • [12] Turk K, Yildirim MS. "Bond strength of reinforcement in splices in beams". Structural Engineering and Mechanics, 16, 469-478, 2003.
  • [13] Turk K, Caliskan S, Yildirim MS. "Influence of loading condition and reinforcement size on the concrete/reinforcement bond strength". Structural Enginnering and Mechanics, 19, 337-346, 2005.
  • [14] Karatas M, Turk K, Ulucan ZC. "Investigation of bond between lap-spliced steel bar and self-compacting concrete: The role of silica fume". Canadian Journal of Civil Engineering, 37, 420-428, 2010.
  • [15] Lagier F, Massicotte B, Charron JP. "Experimental investigation of bond stress distribution and bond strength in unconfined UHPFRC lap splices under direct tension". Cement and Concrete Composites, 74, 26-38, 2016.
  • [16] Başsürücü M. Çelik Sac-Beton Kompozit Döşeme Sistemlerinin Boyuna Kayma Dayanımının Deneysel Olarak Belirlenmesi. Yüksek Lisans Tezi, Mustafa Kemal Üniversitesi, Hatay, Türkiye, 2013.
  • [17] Başsürücü M, Türker H. "Profillenmiş çelik sac-beton kompozi̇t döşeme si̇stemlerinin boyuna kayma dayanımının deneysel olarak belirlenmesi". Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 2, 17-26, 2013.
  • [18] Hameed R, Turatsinze A, Duprat F, Sellier A. "Bond stress-slip behaviour of steel reinforcing bar embedded in hybrid fiber-reinforced concrete". KSCE Journal of Civil Enineering, 17, 1700-1707, 2013.
  • [19] Harajli MH. "Effect of confinement using steel, FRC, or FRP on the bond stress-slip response of steel bars under cyclic loading". Materials and Structures, 39, 621-634, 2006.
  • [20] Yazici Ş, Arel HŞ. "The effect of steel fiber on the bond between concrete and deformed steel bar in SFRCs". Construction and Building Materials, 40, 299-305, 2013.
  • [21] Huang L, Xu L, Chi Y, Deng F, Zhang A. "Bond strength of deformed bar embedded in steel-polypropylene hybrid fiber reinforced concrete." Construction and Building Materials, 218, 176-192, 2019.
  • [22] Bae B, Choi K, Choi S. "Bond stress between conventional reinforcement and steel fibre reinforced reactive powder concrete". Construction and Building Materials, 112, 825-835, 2016.
  • [23] Rossi C, Oliveira C, Picanço S, Pompeu B, Oliveira M. "Development length and bond behavior of steel bars in steel fiber-reinforced concrete in flexural test". Journal of Materials in Civil Engineering, 2020. doi.org/10.1061/(ASCE)MT.1943-5533.0002979.
  • [24] Huang L, Chi Y, Xu L, Chen P, Zhang A. "Local bond performance of rebar embedded in steel-polypropylene hybrid fiber reinforced concrete under monotonic and cyclic loading". Construction and Building Materials, 103, 77-92, 2016.
  • [25] Harajli M, Hamad B, Rteil A. "Effect of confinement of bond strength between steel bars and concrete". ACI Structural Journal, 101, 595-603, 2004.
Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1300-7009
  • Başlangıç: 1995
  • Yayıncı: PAMUKKALE ÜNİVERSİTESİ