Robot kontrollü indüksiyon sertleştirme parametrelerinin sac metal kalıp yüzey sertliğine etkilerinin Taguchi metodu ile incelenmesi

Otomotiv sektörü için üretilen sac şekillendirme kalıplarında kullanılan ve %0.35 oranına kadar varan düşüklükte karbon bulunan çeliklerin yüzeyleri indüksiyon yüzey sertleştirme yöntemi ile manuel olarak ta sertleştirilebilir. Bu çalışmada, sac büküm kalıplarının imalatında sık kullanılan 1.2333 (G59CrMoV18-5) ve EN-JS 2070 küresel grafitli dökme demir iş parçalarının yüzeylerinin geliştirilen bir robot kontrollü indüksiyon sistemi ile sertleştirilmesinde ısıl işlem parametrelerinin yüzey sertliği üzerindeki etkileri araştırılmıştır. İş parçası malzemesi, ısıl işlem uygulama/sertleştirme sıcaklığı ve ilerleme miktarı kontrol faktörleri olarak seçilmiş ve L18 Taguchi ortogonal dizisine göre deneyler gerçekleştirilmiştir. Deneysel çalışma sonucunda; yüzey sertliği üzerinde en etkili parametreler sırasıyla; iş parçası malzemesi*uygulama sıcaklığı etkileşimi (%36.193), ilerleme miktarı (%33.92) ve uygulama sıcaklığı (%12.655) olmuştur. Tüm ısıl işlem şartlarında 1.2333 (G59CrMoV18-5) malzemenin yüzey sertliği daha yüksek elde edilmiştir. İlerleme miktarının azaltılmasıyla her iki malzeme içinde yüzey sertlik değerlerinin arttığı sonucuna ulaşılmıştır. Uygulama sıcaklığının artmasına bağlı olarak yüzey sertlik değerlerinin EN-JS 2070 malzemesi için azalırken, 1.2333 malzemesi için arttığı görülmüştür.  Ayrıca, seçilen şartlarda yüzey sertlik değerlerinin tahmini için ikinci dereceden tahminsel denklem geliştirilmiş ve bu denklemin korelasyon katsayısı R2=0.81 hesaplanmıştır.

Investigation with Taguchi method of the effects of the robot-controlled induction hardening parameters on surface hardness of sheet metal moulds

The surfaces of the steels which are used in the sheet metal forming moulds produced for the automotive industry and which include carbon in a low amount up to 0.35% by ratio can be hardened manually through induction surface hardening method. The effects of heat treatment parameters on surface hardness in the hardening of the surfaces of workpieces made of 1.2333 cast tool steel often used in the production of sheet metal bending moulds and EN-JS 2070 spheroidal graphite cast iron using a robot-controlled induction system developed were investigated in this study. Workpiece material, heat treatment/hardening temperature, and feed rate were selected as the control factors and experiments were conducted according to L18 Taguchi orthogonal array. As a result of the experimental study, the most effective parameters on surface hardness were the interaction between workpiece material and treatment heat (36.193%), feed rate (33.92%) and treatment heat (12.655%) respectively. Under all heat treatment conditions, the surface hardness of the 1.2333 (G59CrMoV18-5) material was obtained higher. By reducing the feed rate it has been concluded that surface hardness of both materials are increased. Depending on increasing application temperature while surface hardness value decreased for EN-JS 2070 material, increased for 1.2333 material. Moreover, a predictive quadratic equation was developed to predict the surface hardness values under the selected conditions and the correlation coefficient of this equation was calculated as R2=0.81.

___

  • Kochure PG, Nandurkar KN. "Application of taguchi methodology in selection of process parameters for induction hardening of EN8 D Steel". International Journal of Modern Engineering Research, 2(5), 3736-3742, 2012.
  • Kohli A, Singh H. "Optimization of processing parameters in induction hardening using response surface methodology". Indian Academy of Sciences, 36(2), 141-152, 2011.
  • K. Misra M, Bhattacharya B, Singh O, Chatterjee A. "Optimization of the induction hardening process of tow axle spindle". International Journal of Engineering Research and Technology, 2(11), 2278-0181, 2013.
  • Shen NY, Xu H, Tong L, Li J, Wu YZ. "A Study on robotic off-line programming system in induction hardening for fillets or chamfers of mould". Shanghai University and Springer-Verlag Berlin Heidelberg, 4(1), 89-96, 2016.
  • Qi X, Zhu S, Ding H, Xu M. "Theoretical and experimental analysis of electric contact surface hardening of ductile iron". Applied Surface Science, 288, 591-598. 2014.
  • Lee MK, Kim GH, Kim KH, Kim WW. "Control of surface hardnesses, hardening depths, and residual stresses of low carbon 12 Cr steel by flame hardening". Surface and Coatings Technology, 184, 239-246, 2004.
  • Kayacan MC, Colak O. "A fuzzy approach for induction hardening parameters selection". Materials and Design, 25(2), 155-161, 2004.
  • Pantleon K, Kessler O, Hoffann F, Mayr P. "Induction surface hardening of hard coated steels". Surface and Coatings Technology, 120-121, 495-501, 1999.
  • Kristoffersen, H, Vomacka P. "Influence of process parameters for induction hardening on residual stresses". Materials & Design, 22(8), 637-644, 2001.
  • Sari NY, Yilmaz M. "Investigation of abrasive+erosive wear behaviour of surface hardening methods applied to AISI 1050 steel". Materials & Design, 27(6), 470-478, 2006.
  • Kobayashi S, Takahashi H, Kamada Y. "Evaluation of case depth in induction hardened steels: magnetic hysteresis measurements and hardness-depth profiling by differential permeability analysis". Journal of Magnetism & Magnetic Materials, 343, 112-118, 2013.
  • Wang WF. "Effect of alloying elements and processing factors on the microstructure and hardness of sintered and induction-hardened Fe-C-Cu alloys". Materials Science & Engineering: A, 402(1-2), 92-97, 2005.
  • Yang LJ. "Plasma surface hardening of assab 760 steel specimens with taguchi optimisation of the processing parameters". Journal of Materials Processing Technology, 113(1-3), 521-526, 2001.
  • Pashby IR, Barnes S, Bryden BG. "Surface hardening of steel using a high power diode laser". Journal of Materials Processing Technology, 139(1-3), 585-588, 2003.
  • Shin HJ, Yoo YT. "Microstructural and hardness investigation of hot-work tool steels by laser surface treatment". Journal of Materials Processing Technology 201(1-3), 342-347, 2008.
  • Montgomery DC. Taguchi’s Contributions to Experimental Design and Quality Engineering, Design and Analysis of Experiment. 3rd ed., Canada, USA, John Wiley and Sons, 1991.
  • Canıyılmaz E, Kutay F. "Taguchi metodunda varyans analizine alternatif bir yaklaşim". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 18(3), 51-63, 2003.
  • Roy RK. A Primer on the Taguchi Method. 2nd ed. New York, USA, Van Nostrand Reinhold, 1990.