Patlama, yangın ve toksik yayılım fiziksel etki alanının belirlenmesi

Çalışmada, patlama, yangın ve toksik yayılım ile sonuçlanan endüstriyel kazaların etki alanlarının belirlenmesine yönelik metodoloji geliştirilmiştir. Afet riskli alanlarının derecelendirilmesi için risk matrisi oluşturulmuştur. Sanayiciler ile kontrol ve izlemede görevli ilgili kişi ya da kurumların hangi durumda hangi etki alanı belirleme aracını kullanabileceği açıklanmaya ve standart bir yaklaşım oluşturulmaya çalışılmıştır. Patlama, yangın ve toksik yayılım etkisi oluşturabilecek bir kuruluş için aynı miktarda (30000Ib) toksik gaz (klor), toksik sıvı (hidrazin) ve yanabilen madde (propan) üzerinden örnek uygulama çalışmaları yürütülmüştür. Örnek uygulamalar, tesis dışı risk analizine dayanan korelasyonlar ve ücretsiz ALOHA yazılımı kullanılarak gerçekleştirilmiştir. Korelasyonlara ait alternatif senaryo sonuçları ALOHA yazılımı ile elde edilen sonuçlarla uyumlu olarak belirlenmiştir. Böylece, etki alanını belirleyebilmek için daha az veri bilgisi gerektiren korelasyonların öncelikli olarak pratik bir şekilde uygulanabileceği tespit edilmiştir. En geniş sonlanma noktası mesafesi (54.2 km-en kötü durum senaryosu, 60 dk. kırsal alan) örnek toksik sıvı (hidrazin) için elde edilmiştir. Korelasyonlar değerlendirildiğinde, kırsal alan için tüm sonlanma noktası mesafelerinin kentsel alana göre yüksek olduğu belirlenmiştir. ALOHA yazılımında ise kırsal ve kentsel durum için tehlike alanı mesafelerinin çok büyük bir değişim göstermediği tespit edilmiştir. Örnek uygulama çalışmaları sonucunda kuruluş,  yüksek risk seviyesinde belirlenmiştir.

Determination of explosion, fire and toxic emission physical effect areas

In the study, a methodology was developed for the determination of effect areas considering explosion, fire and toxic emissions of industrial accidents. A risk matrix was established for grading of disaster risk areas. It was tried to explain that manufacturers and control and monitoring of the relevant person or institution in charge of in which state and with which tool could be used to determine the impact area and to create a standard approach. The case studies were carried out over the same amount (13 620 kg) of toxic gases (chlorine), toxic liquids (hydrazine) and flammable substances (propane) which might pose explosion, fire and toxic emissions affects for an establishment. The case studies were performed with using correlations based on offsite consequence analysis and free ALOHA software. The results of alternative scenario correlation were determined in accordance with the results obtained with the ALOHA software. Thus, it was determined that correlations required less information in order to determine effect area may be implemented in a practical way primarily. The largest end-point distance (54.2 km-worst case scenario, 60 min, rural areas) was obtained for sample toxic liquid (hydrazine). When correlations were evaluated, all endpoint distance for rural areas were found to be higher than in urban areas. Threat zone distances were found to be not change so much in ALOHA software for rural and urban areas. The establishment was obtained at a high risk level as a result of case studies.

___

  • Büyük Endüstriyel Kazaların Önlenmesi ve Etkilerinin Azaltılması Hakkında Yönetmelik, 30.12.2013 Tarih, 28867 Mükerrer Sayılı Resmi Gazete.
  • Jiang B, Su M, Liu Z, Cai F, Yuan S, Shi S, Lin B. “Effects of changes in fuel volume on the explosion-proof distance and the multiparameter attenuation characteristics of methane-air explosions in a semi-confined pipe”. Journal of Loss Prevention in the Process Industries, 39, 17-23, 2016.
  • Brzozowska L. “Computer simulation of impacts of a chlorine tanker truck accident”. Transportation Research Part D: Transport and Environment, 43, 107-122, 2016.
  • Cao H, Li T, Li S, Fan T. “An integrated emergency response model for toxic gas release accidents based on cellular automata”. Annals of Operations Research, 255(1-2), 617-638, 2016.
  • Shariff AM, Wahab NA, Rusli R. “Assessing the hazards from a Bleve and minimizing its impacts using the inherent safety consept”. Journal of Loss Prevention in the Process Industries, 41, 303-314, 2016.
  • Ebrahemzadih M, Maleki A, Darvishi E, Abadi MM, Dehestaniathar S. “The analysis of process accidents due to risks in the petrochemical ındustries-the case study of radiation ıntensity determination proportional to distance from tank level”. Open Journal of Safety Science and Technology, 5(2),21-26, 2015.
  • Sochet I, Sauvan PE, Boulanger R, Nozeres F. “Effect of a gas charge explosion at the closed end of a gas storage system”. Journal of Loss Prevention in the Process Industries, 27, 42-48, 2014.
  • Pitblado R, Alderman J, Thomas JK. “Facilitating consistent siting hazard distance predictions using the TNO multi-energy model”. Journal of Loss Prevention in the Process Industries, 30, 287-295, 2014.
  • Ji W, Wen-hua S. “Fire and Explosion Index calculation method incorporating classified safety measure credits”. Journal of Loss Prevention in the Process Industries, 26, 1128-1133, 2013.
  • Tauseef SM, Rashtchian D, Abbasi T, Abbasi SA, “A method for simulation of vapour cloud explosions based on computational fluid dynamics (CFD)”. Journal of Loss Prevention in the Process Industries, 24, 638-647, 2011.
  • Angan S, Gupta AK, Mishra IM. “Engineering layout of fuel tanks in a tank farm”. Journal of Loss Prevention in the Process Industries, 24, 568-574, 2011.
  • Sandercock P, Mark L. “Fire investigation and ignitable liquid residue analysis-a review: 2001-2007”. Forensic Science International, 176(2-3), 93-110, 2008.
  • Shariff AM, Rusli R, Leong CT, Radhakrishnan VR, Buang A. “Inherent safety tool for explosion consequences study”. Journal of Loss Prevention in the Process Industries, 19(5), 409-418, 2006.
  • Siuta D, Markowski AS, Mannan MS. “Uncertainty techniques in liquefied natural gas (LNG) dispersion calculations”. Journal of Loss Prevention in the Process Industries, 26(3), 418-426, 2013.
  • Kao CS, Hu KH. “Acrylic reactor runaway and explosion accident analysis”. Journal of Loss Prevention in the Process Industries, 15(3), 213-222, 2002.
  • Ciccarelli G, Fthenakis VM, Boccio JL. “A method of analysis for gas explosions: H2Se case study”. Journal of Loss Prevention in the Process Industries, 12(2), 157-165, 1999.
  • Planas-Cuchi E, Vı´lchez JA, Pe´rez-Alavedra FX, Casal J. “Effects of fire on a container storage system-a case study”. Journal of Loss Prevention in the Process Industries, 11(5), 323-331, 1998.
  • Risk Management Program Guidance for Offsite Consequence Analysis. “United States Environmental Protection Agency”. https://www.hsdl.org/?abstract&did=32802&advancedadvanced (01.12.2015).
  • Yellow Book. “Methods for the Calculation of Physical Effects Due to releases of hazardous materials (liquids and Gases)”. http://content.publicatiereeksgevaarlijkestoffen.nl/docments/PGS2/PGS2-1997-v0.1-physical-effects.pdf (24.12.2015).
  • Purple Book. “Guidelines for Quantitative Risk Assessment”. http://content.publicatiereeksgevaarlijkestoffen.nl/docments/PGS3/PGS3-1999-v0.1-quantitative-risk-assessment.pdf (06.01.2016).
  • Green Book. “Methods for the determination of possible damage to people and objects resulting from releases of hazardous materials”. http://tr.scribd.com/doc/61170131/Green-Book-Methods-for-the-Determination-of-Possible-Damage-CPR-16E#scribd (06.01.2016)
  • Red Book “Methods for determining and processing probabilities”. http://content.publicatiereeksgevaarlijkestoffen.nl/documents/PGS4/PGS4-1997-v0.1-probabilities.pdf (06.01.2016).