Köprü ayağı oyulma derinliği ile düşey hız bileşeni arasındaki ilişkinin araştırılması

Köprü ayakları etrafında oluşan yerel oyulmalar önemli bir mühendislik problemi olarak kabul edilmektedir. Bu çalışmada, 6 cm ve 9 cm çapa sahip iki köprü ayağı, içinde 0.43 mm medyan dane çapında sediment bulunan 18 m uzuluğunda ve 70 cm genişliğinde dikdörtgen kesitli bir kanal içine yerleştirilmiş ve bu ayaklar etrafında oluşan oyulmalar ölçülmüştür. Her biri 4 saat sürdürülen 5 adet deney gerçekleştirilmiştir. Deneyler sırasında, oyulma derinliğinin zamanla değişimi ( ) ve ayağın 6 cm membasında tabandan 4 cm yukarıdaki noktasal hız değişimi zamana bağlı olarak kaydedilmiştir. Düşey hız bileşeni ( ) ile oyulma derinliği arasındaki ilişki araştırılmış ve bu parametrelerin boyutsuz biçimleri için bir denklem önerilmiştir. Sözkonusu bağıntının, literatürde bulunan sınırlı miktardaki çalışmaya ait veri ile uyum içinde olduğu görülmektedir.

___

  • Yanmaz M. “Yıkılan akarsu köprüleri üzerine görüşler”. Türkiye Mühendislik Haberleri, 420-421-422, 4-5-6, 137-141, 2002.
  • Shirhole AM, Holt RC. “Planning for a Comprehensive Bridge Safety Program”. Transportation Research Record 1290, Transportation Research Board, National Research Council, Washington, DC, USA, 1991.
  • Yanmaz M. Koprü Hidroliği. Ankara, Türkiye, METU Press, 2002.
  • Sümer BM, Christiansen N, Fredsoe J. “Influence of cross-section on wave scour around piles”. Journal of Waterway, Port, Coastal, and Ocean Engineering, 119(5), 477-495, 1993.
  • Melville BW, Chiew YM. “Time scale for local scour at bridge piers”. Journal of Hydraulic Engineering, 125(1), 59-65, 1999.
  • Oliveto G, Hager WH. “Further results to time-dependent local scour at bridge elements”. Journal of Hydraulic Engineering, 131(2), 97-105, 2005.
  • Lim SY. “Equilibrium clear-water scour around an abutment”. Journal of Hydraulic Engineering, 123(3), 273-243, 1997.
  • Ettema R. “Scour at Bridge Piers”. School of Engineering, University of Auckland, Auckland, New Zealand, 216, 1980.
  • Lauchlan CS. Pier Scour Countermeasures, Ph.D. Thesis, University of Auckland, Auckland, New Zelland, 1999.
  • Breusers HNC, Raudkivi AJ, Scouring, 1st Ed., AA. Balkema Rotterdam, Brookfield, 1991.
  • Baker CJ. “Laminar horseshoe vortex”. Journal of Fluid Mechanics, 95(2), 347-367, 1979.
  • Baker CJ. “The turbulent horseshoe vortex”. Journal of Wind Engineering Industrial Aerodynamics, 6(1-2), 9-23, 1980.
  • Baker CJ. “The position of points of maximum and minimum shear-stress upstream of cylinders mounted normal to flat plates”. Journal of Wind Engineering Industrial Aerodynamics, 18(3), 263-274, 1985.
  • Yulistiyanto B. “Velocity measurements on flow around a cylinder”. Dinamika Teknik Sipil, 9(2), 111-118, 2009.
  • Dargahi B. “Controlling mechanism of local scouring”. Journal of Hydraulic Engineering, 116(10), 1197-1214, 1990.
  • Melville BW. “Local Scour at Bridges Sites”. School of Engineering, University of Auckland, Auckland, New Zealand, 117, 1975.
  • Melville BW, Raudkivi AJ. “Flow characteristics in local scour at bridge piers”. Journal of Hydraulic Research, 15(4), 373-380, 1977.
  • Qadar A. “The vortex scour mechanism at bridge piers”. Proceedings ICE Res. Theory, 71(3), 739-757, 1981.
  • Muzzammil M, Gangadharaiah T. “The mean characteristics of horseshoes vortex at a cylindrical pier”. Journal of Hydraulic Research, 41(3), 285-297, 2003.
  • Sarker MA. “Flow measurement around scoured bridge piers using acourstic doppler velocimeter (ADV)”. Flow Measurement and Instrumentation, 9(4), 217-227, 1998.
  • Ahmed F, Rajaratnam N. “Flow around bridge piers”. Journal of Hydraulic Engineering, 124(3), 288-300, 1998.
  • Istiarto I. Flow Around a Cylinder in a Scoured Channel Bed. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2001.
  • Dey S, Raikar VR. “Characteristics of horseshoe vortex in developing scour holes at piers”. Journal of Hydraulic Engineering, 133(4), 399-413, 2007.
  • Das S, Das R, Mazumdar A. “Comparison of characteristics of horseshoe vortex at circular and square piers”. Research Journal of Applied Sciences, Engineering and Technology, 5(17), 4373-4387, 2013.
  • Unger J, Hager WE. “Down-flow and horseshoe vortex characteristics of sediment embedded bridge piers”. Experiments in Fluids, 42(1), 1-19, 2007.
  • Diab R, Link O, Zanke U. “Experimental investigation of 3D flow field around square pier”. 33rd IAHR Congress: Water Engineering for a Sustainable Environment, Canada, 2009.
  • Saçan C, Çetin OK, Bombar G. “Investigation of the scour inception around a circular bridge pier”. 2nd International Conference on Water, Energy and the Environment, Kusadasi, Turkey, 21-24 September 2013.
  • Bombar G. “Clear-Water bridge scour under triangular-shaped hydrographs with different peak discharges”. 2014 River Flow Conference, Lausanne, Switzerland, 2014.
  • Bombar G. “The hysteresis and shear velocity in unsteady flows”. Journal of Applied Fluid Mechanics, 9(2), 839-853, 2016.
  • Yulistiyanto B. Flow Around a Cylinder Installed in a Fixed-Bed Open Channel. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 1997.
  • Furuichi N, Takeda Y, Kumada M. “Spatial structure of the flow through an axisymmetric sudden expansion”. Experiments in Fluids, 34(5), 643-650, 2003.
  • Blanckaert K., Flow and Turbulence in Sharp Open-Channel Bends. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2003.
  • Bombar G, Kantoush S, Albayrak İ. “Comparison of ADVP and UVP in terms of velocity and turbulence measurements in a uniform flow”. River Flow 2008, Çeşme, Turkey, 6-8 September 2008, Editors; M. S. Altınakar, N. Yıldırım, S. Y. Kumcu, G. Tayfur and M. Göğüş
  • Birjukova O, Guillen S, Alegria F, Cardoso AH. “Three dimensional flow field at confluent fixed-bed open channels”. River Flow 2014, Lausanne, Switzerland, 3-5 September 2014.
  • Duma D, Erpicum S, Archambeau P, Pirotton M, Dewals B. “Flow and turbulence characterization as an onset for assessing the stability of gravel beds”. River Flow 2014, Lausanne, Switzerland, 3-5 September 2014.
  • Simarro G, Fael CMS, Cardoso AH. “Estimating Equilibrium Scour Depth at Cylindrical Piers in Experimental Studies”. Journal of Hydraulic Engineering, 137(9), 1089-1093, 2011.
  • Melville BM. “Pier and abutment scour: integrated approach”. Journal of Hydraulic Engineering, 123(2), 125-136, 1997.