Kağıt üretim atığı katkılı yüksek yoğunluklu polietilen (yype) kompozitlerin mekanik özelliklerinin incelenmesi

Bu çalışmada, büyük oranda selüloz lifler ile inorganik katkılar (kalsit ve kil mineralleri) içeren kağıt üretim atıkları, farklı oranlarda (ağırlıkça %10-60) yüksek yoğunluklu polietilen (YYPE) kompozit üretiminde kullanılarak kağıt üretim atığı katkısının mekanik özellikler üzerindeki etkisi incelenmiştir. Kompozitler yüksek hızlı termo-kinetik mikseri ve kalıplama prosesi kullanılarak üretilmiştir. Üretilen kompozitlerin mekanik özellikleri standart test metotları kullanılarak analiz edilmiştir. Sonuçlara göre, kompozitlerin eğilme modül değerlerinin artan katkı oranıyla arttığı görülmüştür. Özellikle, eğilme dayanımının ağırlıkça %40 katkı içeren kompozitte %26.3 oranında arttığı ortaya konmuştur. Kağıt atık katkılı YYPE kompozitlerin çekme dayanımı YYPE matris ile kıyaslandığında %10-20 oranında artış görülmüştür. Sonuç olarak, sunulan çalışmada kağıt üretim atık katkıları hiçbir modifikasyon ajanı kullanılmadan kompozitlerin üretimi gerçekleştirilmiş ve buna rağmen kompozitlerin mekanik özelliklerinde gelişme sağlanmıştır. Bu sayede, endüstriyel atık olarak ekonomik bir değeri olmayan kağıt üretim atığı polimer kompozit yapı içerisinde kullanılarak iyi mekanik özelliklere sahip kompozitler üretilmiştir.

Investigation of mechanical properties of paper processing residue filled high density polyethylene (hdpe) composites

In this study, paper processing residues containing a large extent cellulosic fibrous with inorganic filler such as calcite and clay minerals were used in the manufacturing of high density polyethylene (HDPE) composite. The residues ranging from 10 to 60wt% were loaded into HDPE in order to evaluate the effect of the paper processing residue filler on mechanical properties of HDPE. The composites were produced using mixing process by a high-speed thermo-kinetic mixer and molding process. Mechanical properties of the produced composites were analyzed using standard test methods. According to results, it was observed that the flexural modulus of composites increased with increasing filler contents. Especially, the flexural strength was increased by 26.3% for the 40wt% filler content. The tensile strength of paper industry mill residues filled HDPE composites exhibited an increase of 10-20% compared to that of HDPE matrix. Consequently, in the present study, paper processing residues filler without any modifying agent was used for the production of HDPE composites having better mechanical properties compared to HDPE. Thus, paper processing residues which have no economic value and cause an environmental problem have served as a filler material for HDPE.

___

  • Pöllanen M, Suvanto M, Pakkanen TT. “Cellulose reinforced high density polyethylene composites-Morphology, mechanical and thermal expansion properties”. Composites Science and Technology, 76, 21-28, 2013.
  • Huang HB, Du HH, Wang WH, Shi JY. “Characteristics of Paper Mill Sludge-Wood Fiber-High density polyethylene composites”. Polymer Composites, 33, 1628-1634, 2012.
  • Hamzeh Y, Ashori A, Mirzaei B. “Effect of Waste Paper Sludge on the Physico-Mechanical Properties of High density polyethylene-Wood Flour Composites”. Journal of Polymers and the Environment, 19, 120-124, 2011.
  • Son J, Kim HJ, Lee PW. “Role of Paper Sludge Particle Size and Extrusion Temperature on Performance of Paper Sludge-Thermoplastic Polymer Composites”. Journal of Applied Polymer Science, 82, 2709-2718, 2001.
  • ASTM D3039. “Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials”. ASTM International, West Conshohocken, PA, 2014.
  • ASTM D790. “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical İnsulating Materials”. ASTM International, West Conshohocken, PA, 2010.
  • Zhao H, Kwak JH, Zhang ZC. Brown HM, Arey BW, Holladay JE. “Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis”. Carbohydrate Polymers, 68(2), 235-241, 2007.
  • Kontoyannis Christos G, Nikos V. "Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy". Analyst, 125.2, 251-255, 2000.
  • Sakharov BA, Drits VA. "Mixed-layer kaolinite-montmorillonite: A comparison of observed and calculated diffraction patterns”. Clays and Clay Minerals, 21(1), 15-17, 1973.
  • Reig FB, Adelantado, JG, Moreno MM. “FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method”. Application to Geological Samples, Talanta, 58(4), 811-821, 2002.
  • Shahwan T, Zünbül B, Tunusoğlu Ö, Eroğlu AE. “AAS, XRPD, SEM/EDS, and FTIR characterization of Zn 2+ retention by calcite, calcite–kaolinite, and calcite–clinoptilolite minerals”. Journal of Colloid and Interface Science, 286(2), 471-478, 2005.
  • Kılınc AC. et al. "Manufacturing and characterization of vine stem reinforced high density polyethylene composites". Composites Part B: Engineering, 91, 267-274, 2016.
  • Yang X, Weihong W, Haibing H. "Resistance of paper mill sludge/wood fiber/high‐density polyethylene composites to water immersion and thermotreatment". Journal of Applied Polymer Science, 132(11), 2015.
  • Salmah HI, Bakar AA. “A comparative study on the effects of paper sludge and kaolin on properties of polypropylene/ethylene propylene diene terpolymer composites”. Iranian Polymer Journal, 14(8), 705-713, 2005.
  • Soucy J, Koubaa A, Migneault S, Riedl B. “The potential of paper mill sludge for wood–plastic composites”. Industrial Crops and Products, 54, 248-256, 2014.
  • Cho J, MS, Joshi, CT, Sun. "Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles". Composites Science and Technology 66(13), 1941-1952, 2016.
Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1300-7009
  • Başlangıç: 1995
  • Yayıncı: PAMUKKALE ÜNİVERSİTESİ