Grafen oksit (GO) ve indirgenmiş grafen oksit (RGO) dolgulu PVC kompozitlerin mekanik özelliklerinin karşılaştırılması

Grafen türevleri (grafen oksit-GO, indirgenmiş grafen oksit-RGO, çok tabakalı grafen-MLG vb.) polimer malzemelerin özelliklerini iyileştirmek için yüksek potansiyele sahip dolgu maddeleri olarak bilinmektedirler. Bu çalışmada kompozitlerin mekanik özelliklerinde ki değişim dolgu tipine ve dolgu miktarına göre incelenmiştir. Kompozitler, dolgu maddeleri olarak GO ve RGO, matriks olarak polivinil klorür (PVC) ile hazırlanmıştır. X-ışını kırınımı (XRD) sonuçları, GO ve RGO tabakalarının polimer matriksde homojen dağıldığını göstermiştir. Taramalı elektron mikroskobu (SEM) çalışmaları, RGO içeren kompozitin düz ve pürüzsüz, GO içeren kompozitin ise dolgu- matriks etkileşimi daha iyi olduğu için yüksek oranda gözenekli morfoloji sergilediklerini ortaya koymuştur. Yüksek GO (ağırlıkça %1) ve düşük RGO (ağırlıkça %0.1) içeren kompozitlerin mekanik özellikleri önemli bir iyileşme sergilemiştir. Dolgu maddesi içermeyen PVC’ye nazaran ağırlıkça %1 GO ve %0.1 RGO içeren kompozitlerin çekme mukavemetleri sırasıyla %84 ve %42 artmıştır. RGO ilavesi kompozit yapıyı rijitleştirdiğinden, RGO içeren kompozitler GO içeren kompozitlere kıyasla daha yüksek mikrosertlik ve daha düşük yüzde uzama değerleri sergilemişlerdir.

A comparison study on mechanical properties of PVC composites filled by graphene oxide (GO) and reduced graphene oxide (RGO)

Graphene derivatives (graphene oxide-GO, reduced graphene oxide-RGO, multi-layer grapheme-MLG, etc.) generally are considered to be extremely significant fillers to improve properties of polymer materials. In this work, the mechanical properties of the composites according to filler type and filler loading were investigated. The composites were prepared using GO, RGO as the fillers and polyvinyl chloride (PVC) as a matrix. The X-ray diffraction (XRD) studies on the composites showed that the GO and RGO layers well-dispersed in polymer matrix. The scanning electron microscopy (SEM) showed that the composite with RGO exhibited smooth and clean surfaces, but the surface images of the composite with GO showed highly porous morphology because of the good filler-matrix interaction. The composites at a high GO loading (1% wt.) and a low RGO loading (0.1% wt.) indicated a prominent improvement in the mechanical properties. When compared the unfilled PVC, the tensile strength of the composite with 1 wt.% loading of the GO and 0.1 wt.% loading of the RGO increased by 84% and 42%, respectively. The composite with RGO showed a higher microhardness value compared to that of the composite with GO, but the elongation at break of the composite with RGO decreased because RGO loading increased the brittleness of composite structure.

___

  • Marathe DS, Joshi PS. “Characterization of highly filled wood flour-PVC composites: Morphological and thermal studies”. Journal of Applied Polymer Science, 11(1), 90-96, 2009.
  • Janajreha I, Alshraha M, Zamzam S. “Mechanical recycling of PVC plastic waste streams from cable industry: A case study”. Sustainable Cities and Society, 18, 13-20, 2015.
  • Wang H, Xie G, Fang M, Ying Z, Tong Y, Zeng Y. “Electrical and mechanical properties of antistatic PVC films containing multi-layer graphene”. Composites Part B, 79, 444-450, 2015.
  • Hu J, Jia X, Li C, Ma Z, Zhang G, Sheng W, Zhang X, Wei Z. “Effect of interfacial interaction between graphene oxide derivatives and poly(vinyl chloride) upon the mechanical properties of their nanocomposites”. Journal of Materials Science, 49(7), 943-2951, 2014.
  • Deshmukh K, Joshi GM. “Thermo-mechanical properties of poly (vinyl chloride)/graphene oxide as high performance nanocomposites”. Polymer Testing, 34, 211-219, 2014.
  • Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. “Graphene and Graphene Oxide: Synthesis, Properties, and Applications”. Advances Materials, 22, 3906-3924, 2010.
  • Kim F, Cote LJ, Huang J. “Graphene Oxide: Surface Activity and Two-Dimensional Assembly”. Advances Materials, 22, 1954-1958, 2010.
  • Joshi GM, Deshmukh K. “Optimized Quality Factor of Graphene Oxide-Reinforced PVC Nanocomposite”. Journal of Electronic Materials, 43(4), 1161-1165, 2014.
  • Jin Y, Huang S, Zhang M, Jia M, Hu D. “A Green and Efficient Method to Produce Graphene for Electrochemical Capacitors From Graphene Oxide Using Sodium Carbonate As A Reducing Agent”. Applied Surface Science, 268, 541-546, 2013.
  • Wang H, Yuan X, Wu Y, Huang H, Peng X, Zeng G, Zhong H, Liang J, Ren M. “Graphene-Based Materials: fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation”. Advances in Colloid and Interface Science, 195-196, 19-40, 2013.
  • Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. “Graphene Based Materials: Past, Present and Future”. Progress in Materials Science, 56, 1178-1271, 2011.
  • Dağcı K. Poli (Pyronin Y) Ince Filmlerinin ve Müstakil Grafen/Poli(Pyronin Y)/Gümüş Nanopartikül Elektrotların Hazırlanması, Karakterizasyonu ve Nitritin Amperometrik Tayininde Kullanılması. Doktora Tezi, Atatürk Üniversitesi, Erzurum, Türkiye, 2015.
  • Liu Y, Zhang Y, Ma G, Wang Z, Liu K, Liu H. “Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor”. Electrochimica Acta, 88, 519-525, 2013.
  • Kamisan AI, Kamisan AS, Ali RMd, Tunku Kudin TI, Hassan OH, Halim NA, Yahya MZA. “Synthesis of graphene via green reduction of graphene oxide with simple sugars”. Advanced Materials Research, 1107, 542-546, 2015.
  • Wang Y, Shi Z, Yin J. “Facile Synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites”. ACS Applied Materials & Interfaces, 3, 1127-1133, 2011.
  • Fernandez-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, Tascon JMD. “Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions”. Journal of Physical Chemistry C, 114, 6426-6432, 2010.
  • Hummers WS, Offeman RE. “Preparation of graphitic oxide”. Journal of the American Chemical Society, 80(6), 1339,1958.
  • Gurunathan S, Han JW, Kim E, Kwon DN, Park JK, Kim JH. “Enhanced green fluorescent protein-mediated synthesis of biocompatible graphene”. Journal of Nanobiotechnology, 12(41), 1-16, 2014.
  • Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S. “Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability”. Carbon, 49, 198-205, 2011.
  • Bora C, Bharali P, Baglari S, Dolui SK, Konwar BK. “Strong and conductive reduced graphene oxide/polyester resin composite films with improved mechanical strength, thermal stability and its antibacterial activity”. Composites Science and Technology, 87, 1-7, 2013.
  • Safarpour M, Khataee A, Vatanpour V. “Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance”. Journal of Membrane Science, 489, 43-54, 2015.
  • Li D, Zhang B, Xuan F. “The sequestration of Sr(II) and Cs(I) from aqueous solutions by magnetic graphene oxides”. Journal of Molecular Liquids, 209, 508-514, 2015.
  • Zheng YT, Cao DR, Wang DS, Chen JJ. “Study on the interface modification of bagasse fibre and the mechanical properties of its composite with PVC”. Composites: Part A, 38, 20-25, 2007.
  • Duttagupta SP, Chen XL, Jenekhe SA, Fauchet PM. “Microhardness of porous silicon films and composites”. Solid State Communications, 101, 33-37, 1997.
  • Crespo JE, Sanchez L, Garcıa D, Lopez J. “Study of the mechanical and morphological properties of plasticized pvc composites containing rice husk fillers”. Journal of Reinforced Plastics and Composites, 27(3), 229-243, 2008.