Anülus Kanalda Hava-Hava Arası Nem Geçişinde Membranın Etkisinin İncelenmesi ve Kütle Transfer Eşitliklerinin Çıkarılması

Bu çalışmada, anülus kanalda hava-hava arasında nem geçişinde membranın etkisi incelenmiş, nemli hava-kuru hava akışkanları için matematiksel modelleme yapılmıştır. Oluşturulan modelin paralel ve karşıt akış tiplerinde COMSOL Multiphysics yazılımı kullanılarak kütle transferi eşitlikleri çıkarılıp analizler gerçekleştirilmiştir. Sistemin MATLAB yazılımında sonlu farklar yöntemi ile aynı şartlarda modellemesi yapılarak COMSOL yazılımında elde edilen sonuçların düşük bağıl hatayla doğrulaması yapılmıştır. Hesaplama sonuçlarına göre paralel ve karşıt akışta en yüksek Sherwood sayısı (Sh) sırasıyla yaklaşık 26 ve 28 olarak belirlenmiştir. Çalışmada ayrıca, COMSOL yazılımında yapılan analizden elde edilen sonuçlar kullanılarak, her iki akış tipi için, belirlenen koşullarda (Reynolds sayısı, Re=250-2000, en-boy oranı, L/D=4-128 ve Schmidt sayısı, Sc=0,68), nemli ve kuru hava taraflarında Sh sayısı için yüksek hassasiyette eşitlikler elde edilmiştir.

Investigation of The Effect of Membrane on Air-Air Moisture Transfer in Annular Channel and Determination of Mass Transfer Equations

In this study, the effect of the membrane on the moisture transfer between air and air in the annulus channel was investigated, and mathematical modeling was made for moist air-dry air fluids. In parallel and counter flow types of the created model, mass transfer equations were determined and analyzes were performed using COMSOL Multiphysics software. The system was modelled in the MATLAB software with the finite difference method under the same conditions, and the results obtained in the COMSOL software were verified with a low relative error. According to the calculation results, the highest Sherwood number (Sh) was determined as approximately 26 and 28 in parallel and counter flow, respectively. In the study, using the results obtained from the analysis made in the COMSOL software, for both flow types, under the specified conditions (Reynold number, Re=250-2000, aspect ratio, L/D=4-128 and Schmidt number, Sc=0.68), high-precision equations were obtained for the Sh number on the moist and dry air sides.

___

  • Albdoor AK., Ma Z., Cooper P., Ren H., Al-Ghazzawi F. Thermodynamic analysis and design optimization of a cross flow air to air membrane enthalpy exchanger. Energy 2020a; 202: 117691.
  • Albdoor AK., Ma Z., Cooper P. Experimental investigation and performance evaluation of a mixed-flow air to air membrane enthalpy exchanger with different configurations. Applied Thermal Engineering 2020b; 166: 114682.
  • Bai H., Zhu J., Chen Z., Chu J. Parametric analysis of a cross-flow membrane-based parallel-plate liquid desiccant dehumidification system: Numerical and experimental data. Energy and Buildings 2018; 158: 494-508.
  • Chen Z., Zhu J., Bai H., Yan Y., Zhang L. Experimental study of a membrane-based dehumidification cooling system. Applied Thermal Engineering 2017; 115: 1315-1321.
  • Cho HJ., Cheon SY., Jeong JW. Energy impact of vacuum-based membrane dehumidification in building air-conditioning applications. Applied Thermal Engineering 2021; 182: 116094.
  • Cihan E., Kavasoğulları B., Demir H. Mass transfer correlation for tubular membrane- based liquid desiccant air-conditioning system. Arabian Journal for Science and Engineering 2020a; 45: 519-529.
  • Cihan E., Kavasoğulları B., Demir H. Performance of counter flow membrane-based annular pipe liquid desiccant air conditioner. Applied Thermal Engineering 2020b; 180: 115884.
  • Dai YJ., Wang RZ., Zhang HF., Yu JD. Use of liquid desiccant cooling to improve the performance of vapor compression air conditioning. Applied Thermal Engineering 2001; 21(12): 1185-1202.
  • Duan Z., Zhan C., Zhang X., Mustafa M., Zhao X. Alimohammadisagvand B. Indirect evaporative cooling: past, present and future potentials. Renewable and Sustainable Energy Reviews 2012; 16: 6823-6850.
  • Geankoplis CJ. Transport processes and separation process principles (includes unit operation). 4th ed. Upper Saddle River: Prentice Hall International Inc.; 2003.
  • Huang SM., Yang M. Heat and mass transfer enhancement in a cross-flow elliptical hollow fiber membrane contactor used for liquid desiccant air dehumidification. Journal of Membrane Science 2014; 449: 184-192.
  • Huang SM., Zhang LZ., Tang K., Pei L.-X. Fluid flow and mass transfer in membrane parallel-plate channels used for liquid desiccant dehumidification, International Journal of Heat and Mass Transfer 2012; 55: 2571-2580.
  • Huang SM., Zhong Z., Yang M. Conjugate heat and mass transfer in an internally-cooled membrane-based liquid desiccant dehumidifier. Journal of Membrane Science 2016; 508: 73-83.
  • Isetti C., Nannei E., Magrini A. On the application of a membrane air-liquid contactor for air dehumidification. Energy and Buildings 1999; 25: 185-193.
  • Kistler KR., Cussler EL. Membrane modules for building ventilation. Trans IChemE 2002; 80(A): 53-64.
  • Poling BE., Prausnitz JM., O’Connell JP. The properties of gases and liquids. 5th Ed. USA; McGraw-Hill: 2001.
  • Qu M., Abdelaziz O., Gao Z., Yin H. Isothermal membrane-based air dehumidification: A comprehensive review. Renewable and Sustainable Energy Reviews 2018; 82: 4060-4069.
  • Roulet CA., Heidt FD., Foradini F., Pibiri MC. Real heat recovery with air handling units. Energy and Buildings 2001; 33: 495-502.
  • Woods J. Membrane processes for heating, ventilation, and air-conditioning. Renewable and Sustainable Energy Reviews 2014; 33: 290-304.
  • Yılmaz T. Transfer proseslerinde deneysel ve teorik bulguların yaklaşık eşitliklerle ifadesinde genel esaslar. Isı Bilimi ve Tekniği 1979; 2: 41-46.
  • Zhang LZ., Jiang Y. Heat and mass transfer in a membrane-based energy recovery ventilator. Journal of Membrane Science 1999; 163: 29-38.
  • Zhang LZ. Heat and mass transfer ina cross-flow membrane-based enthalpy exchanger under naturally formed boundary conditions. International Journal of Heat and Mass Transfer 2007; 50: 151-162.
  • Zhang LZ. An analytical solution for heat mass transfer in a hollow fiber membrane based air-to-air heat mass exchanger. Journal of Membrane Science 2010; 360: 217-225.
  • Zhang N., Yin SY., Li M. Model-based optimization for a heat pump driven and hollow fiber membrane hybrid two-stage liquid desiccant air dehumidification system. Applied Energy 2018; 228: 12-20.
Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2687-3729
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2018
  • Yayıncı: Osmaniye Korkut Ata Üniversitesi