Direct Red BWS tekstil boyası adsorpsiyonunun Taguchi L9(34) ortogonal deney tasarımı ile araştırılması

Adsorpsiyon, sulu çözeltilerden boyar maddelerin giderimi için tercih edilen bir yöntemdir. Bu çalışmada, tekstil fabrikasından temin edilen Direct Red BWS boyar maddesinin fıstık kabuğu ile adsorpsiyonu incelenmiştir. Sıcaklık, başlangıç boya konsantrasyonu, başlangıç pH’ı ve adsorbent miktarı adsorpsiyona etki eden parametreler olarak seçilmiştir. Parametrelerin etkin seviyeleri Taguchi L9 ortogonal deney matrisi ile S/N (Sinyal/Gürültü) değerleri hesaplanarak belirlenmiştir. Daha sonra ham verilerden, parametrelerin görece önemini görmek için ANOVA analizi yapılmıştır. Çalışma, başlangıç pH’ının en etkili parametre olduğunu ortaya koymaktadır. Onu, başlangıç boya konsantrasyonu, adsorbent miktarı ve sıcaklık takip etmektedir. Adsorpsiyon deneylerinde etkisi en az olan parametre sıcaklıktır. Optimum şartlar, sıcaklık 23 oC, başlangıç boya konsantrasyonu 150 mg.l-1, başlangıç pH’ı 2.5, adsorbent miktarı 50 mg olarak bulunmuş ve adsorpsiyon kapasitesi qe=50.57 mg.g-1olarak hesaplanmıştır.

Investigations of adsorption of Direct Red BWS textile dye using Taguchi L9(34) orthogonal experimental design

Adsorption is a preferred method for the removal of dyes from aqueous solutions. In this study, Adsorption of Direct Red BWS obtained from the textile plant onto the peanut shell was investigated. Temperature, initial dye concentration, initial pH, and adsorbent dose were selected as affecting parameters for adsorption. S/N (Signal/Noise) values were calculated and the effective level of the parameters were determined using Taguchi L9 orthogonal array. Then, Analysis of Variance (ANOVA) has been used to identify the significant parameters. The study revealed that initial pH was the most effective parameter followed by initial concentration, adsorbent dose, and temperature. The temperature is found to be the least significant parameter in adsorption experiments. The optimum levels of parameters are temperature 23 oC, initial dye concentration 150 mg.l-1, initial pH=2.5 and, adsorbent dose 50 mg respectively and adsorption capacity is qe=50.57 mg.g-1.

___

  • [1] A. Khenifi, Z. Bouberka, F. Sekrane, M. Kameche and Z. Derriche, Adsorption study of an industrial dye by an organic clay. Adsorption, 13(2), 149-158, 2007. doi:10.1007/s10450-007-9016-6.
  • [2] B. A. Fil, Isotherm, kinetic, and thermodynamic studies on the adsorption behavior of malachite green dye onto montmorillonite clay Particulate Science and Technology, 34(1), 118-126, 2016. doi: 10.1080/ 0272 6351.2015.1052122.
  • [3] J. Erkmen, The use of hydroxyethyl cellulose as a transparent filling material in finishing polish. Pigment & Resin Technology, Tem. 2018. doi: 10.1108/PRT-06-2017-0060.
  • [4] S. Dawood and T. Sen, Review on dye removal from ıts aqueous solution into alternative cost effective and non-conventional adsorbents. Journal of Chemical and Process Engineering, 1(104), 1-11, 2014. http://hdl.handle.net/ 20.500.11937/48131
  • [5] X. He, M. Du, H. Li, and T. Zhou, Removal of direct dyes from aqueous solution by oxidized starch cross-linked chitosan/silica hybrid membrane. International Journal of Biological Macromolecules, 82, 174-181, 2016. doi: 10.1016/j.ijbiomac.2015.11.005.
  • [6] E. S. Z. El Ashtoukhy, Loofa egyptiaca as a novel adsorbent for removal of direct blue dye from aqueous solution. Journal of Environmental Management, 90(8), 2755-2761, 2009, doi: 10.1016/ j.jenvman.2009.03.005.
  • [7] N. Liu, H. Wang, C.-H. Weng, and C.-C. Hwang, Adsorption characteristics of Direct Red 23 azo dye onto powdered tourmaline. Arabian Journal of Chemistry, 11(8), 1281-1291, 2018, doi:10.1016/ j.arabjc.2016.04.010.
  • [8] O. Korkut, E. Sayan, O. Lacin, and B. Bayrak, Investigation of adsorption and ultrasound assisted desorption of lead (II) and copper (II) on local bentonite: A modelling study. Desalination, 259(1), 243-248, 2010. doi:10.1016/j.desal. 2010.03.045.
  • [9] Ö. Gök, A. S. Özcan, and A. Özcan, Adsorption behavior of a textile dye of Reactive Blue 19 from aqueous solutions onto modified bentonite. Applied Surface Science, 256(17), 5439-5443, 2010, doi:10.1016/ j.apsusc.2009.12.134.
  • [10] N. K. Amin, Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics. Journal of Hazardous Materials, 165(1), 52-62, 2009, doi:10.1016/ j.jhazmat.2008.09.067.
  • [11] M. Rahmani, M. Kaykhaii, and M. Sasani, Application of Taguchi L16 design method for comparative study of ability of 3A zeolite in removal of Rhodamine B and Malachite green from environmental water samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 188, 164-169, 2018. doi: 10.1016/j.saa.2017.06.070.
  • [12] R. Pundir, G. H. V. C. Chary, and M. G. Dastidar, Application of Taguchi method for optimizing the process parameters for the removal of copper and nickel by growing Aspergillus sp. Water Resources and Industry, 20, 83-92, 2018. doi:10.1016/ j.wri.2016.05.001.
  • [13] G. Karacan ve E. Sayilgan, Glukonik asit ve hidroklorik asit ile atık alkali pillerden çinko ve mangan gideriminin incelenmesi: Taguchi deney tasarımı. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 32(3), 31-38, 2017, doi: 10.21605/cukurovaummfd.357181.
  • [14] J. Li, J. Cai, L. Zhong, H. Cheng, H. Wang, ve Q. Ma, Adsorption of reactive red 136 onto chitosan/montmorillonite intercalated composite from aqueous solution. Applied Clay Science, 167, 9-22, 2019. doi: 10.1016/j.clay.2018.10.003.
  • [15] M. P. Elizalde-González and L. E. García-Díaz, Application of a Taguchi L16 orthogonal array for optimizing the removal of Acid Orange 8 using carbon with a low specific surface area. Chemical Engineering Journal, 163(1), 55-61, 2010. doi: 10.1016/ j.cej .2010 .07.040.
  • [16] H. Serencam ve M. Uçurum, Yeşil Bayburt taşının adsorban olarak kullanılabilirliğinin istatistiksel deney tasarımı ile incelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(1), 352-361, 2019. doi: 10.28948/ngumuh.517139.
  • [17] C. E. Yılmaz, M. A. A. Aslani, ve C. K. Aslani, Helianthus Annuus çekirdeği kabuklarında toryum sorpsiyonunun taguchi metodu kullanılarak incelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 21(63), 741-747, 2019. doi:10.21205/deufmd.2019216306
  • [18] B. Bayrak, O. Laçin, ve H. Saraç, Ham manyezit cevherinin glukonik asit çözeltilerinde çözündürülmesinin optimizasyonu. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi A - Uygulamalı Bilimler ve Mühendislik, 16(2), 195-202, 2015. doi: 10.18038/btd-a.35162.
  • [19] F. N. Azad, M. Ghaedi, K. Dashtian, S. Hajati, and V. Pezeshkpour, Ultrasonically assisted hydrothermal synthesis of activated carbon– HKUST-1-MOF hybrid for efficient simultaneous ultrasound-assisted removal of ternary organic dyes and antibacterial investigation: Taguchi optimization. Ultrasonics Sonochemistry, 31, 383-393, 2016, doi: 10.1016/j.ultsonch.2016.01.024.
  • [20] N. Daneshvar, M. Ayazloo, A. R. Khataee, and M. Pourhassan, Biological decolorization of dye solution containing Malachite Green by microalgae Cosmarium sp. Bioresource Technology, 98(6), 1176-1182, 2007. doi: 10.1016/j.biortech.2006.05.025.
  • [21] S. H. Dhawane, T. Kumar, and G. Halder, Biodiesel synthesis from Hevea brasiliensis oil employing carbon supported heterogeneous catalyst: Optimization by Taguchi method. Renewable Energy, 89, 506- 514, 2016. https://doi.org/10.1016/j.renene. 2015.12.027.
  • [22] M. K. Bilici, Application of Taguchi approach to optimize friction stir spot welding parameters of polypropylene, Materials & Design, 35, 113-119, 2012, https://doi.org/10.1016/j.matdes.2011.08.033
  • [23] M. R. Sohrabi, A. Khavaran, S. Shariati, and S. Shariati, Removal of Carmoisine edible dye by Fenton and photo Fenton processes using Taguchi orthogonal array design. Arabian Journal of Chemistry, 10, S3523-S3531, 2017, doi: 10.1016/ j.arabjc.2014.02.019.
  • [24] J. Zolgharnein, N. Asanjarani, and T. Shariatmanesh, Taguchi L16 orthogonal array optimization for Cd (II) removal using Carpinus betulus tree leaves: Adsorption characterization. International Biodeterioration & Biodegradation, 85, 66-77, 2013, doi: 10.1016/ j.ibiod.2013.06.010.
  • [25] D. Santra, R. Joarder, and M. Sarkar, Taguchi design and equilibrium modeling for fluoride adsorption on cerium loaded cellulose nanocomposite bead. Carbohydrate Polymers, 111, 813-821, 2014. doi: 10.1016/ j.carbpol.2014.05.040.
  • [26] U. Moralı, H. Demiral, and S. Şensöz, Optimization of activated carbon production from sunflower seed extracted meal: Taguchi design of experiment approach and analysis of variance. Journal of Cleaner Production, 189, 602-611, 2018. doi: 10.1016/j.jclepro.2018.04.084.
  • [27] T. B. Gupta and D. H. Lataye, Adsorption of indigo carmine and methylene blue dye: Taguchi’s design of experiment to optimize removal efficiency. Sādhanā, 43, 170, 2018. doi: 10.1007/s12046-018- 0931-x.
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi