Arazi kullanımının sulak alandan tarıma dönüştürülmesinin bazı toprak özellikleri üzerindeki etkileri ve bunların toprak derinliği ile değişimi

Dünyada sulak alan ekosistemlerini etkileyen en önemli insan müdahalelerinden biri arazi kullanımının değiştirilmesidir. Bu çalışmanın amacı, Sultan Sazlığı örneğinde sulak alandan tarıma dönüştürmenin sulak alan ve civarı topraklarda organik karbon ve bazı toprak özellikleri üzerindeki etkilerini ortaya koymaktır. Bu amaçla sulak alan ekosisteminde bulunan sazlık (Örtülüakar ve Kepir Sazlıkları) ve tarıma dönüştürülmüş alanlardan doğal yapısı bozulmamış toprak örneklemesi yapılmış (0-40 cm) ve 10 ar cm’ lik derinlik kademesine ayrılarak her bir derinlik kademesindeki organik karbon miktarı (TOK) ile hacim ağırlığı belirlenmiş ve karbon depolama kapasiteleri hesaplanmıştır. Ayrıca her bir arazi kullanım şeklinden iki derinlik kademesinden (0-20 cm ve 20-40 cm) alınan toprak örneklerinin toprak tekstürü, pH, elektriksel iletkenlik (EC), ateşte kayıp, agregat stabilitesi özellikleri belirlenmiştir. Tarıma dönüştürme Sultan Sazlığı ekosistemindeki çeşitli toprak özelliklerini etkilemiştir. Arazi kullanımı dönüşümlerinden etkilenen toprak özellikleri; organik karbon, karbon depolama kapasitesi, agregat stabilitesi, kum, kil, toz içeriği, hacim ağırlığı, ateşte kayıptır. Toprak derinliği değişiminden etkilenen toprak özellikleri ise organik karbon, karbon depolama kapasitesi, pH, kil, kum içeriği ve hacim ağırlığıdır.

The effects of land use conversion from marshland to farmland on some soil properties and their changes with soil depth

One of the most important human interventions affecting wetland ecosystems in the world is land use change. The aim of the study is to reveal the effects of land use conversion (wetland to farmland) on soil organic carbon and some soil properties of wetlands in the case of the Sultan Marshes. Undisturbed soil samples were collected from a depth of 0-40 cm in marshlands (Örtülüakar and Kepir Marshes) and in those converted to farmland in the wetland ecosystem and the amount of soil organic carbon (SOC), bulk density and carbon storage capacity of soils at each land use types were calculated by dividing into 10 cm soil depth levels. In addition, disturbed soil samples were taken at two soil depths (0-20 cm and 20-40 cm). Some physical and chemical properties of soils were analyzed using this samples such as particle size distribution, pH, electrical conductivity (EC), loss on ignition and aggregate stability. Soil organic carbon, carbon storage capacity, loss on ignition, aggregate stability, clay, silt, sand contents and bulk density were the soil properties affected by land use conversion. Soil organic carbon, carbon storage capacity, pH, clay, sand contents and bulk density were the soil properties showed changes with soil depth.

___

  • N. Karakuş, Yutak alanların iklim değişikliği üzerine etkilerinin Türkiye örneğinde araştırılması, Yüksek Lisans Tezi, Ç.Ü., Fen Bilimleri Enstitüsü, Türkiye, 2010.
  • https://www.saltmarshapp.com/science/#science (Accessed 23 October 2021).
  • D. Tolunay ve A. Çömez, Orman topraklarında karbon depolanması ve Türkiye’deki durum, Küresel İklim Değişimi ve Su Sorunlarının Çözümünde Ormanlar, 13–14 Aralık 2007, İstanbul. 2007.
  • N. Mısır, M. Mısır ve C. Ülker, Karbon depolama kapasitesinin belirlenmesi, Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, Özel Sayı, 300-305. 2012.
  • IPCC, Special report on carbon dioxide capture and storage: Summary for policymakers. Approved by the 8th Session of IPCC Working Group III. IPCC, Montreal, Canada,. 2005.
  • A. Bedard-Haughn, F. Yongbloed, J. Akkerman, A. Uijl, E. de Jong, T. Yates and D. Pennock, The effects of erosional and management history on soil organic carbon stores in ephemeral wetlands of hummocky agricultural landscapes. Geoderma 135, 296–306. 2006. https://doi.org/10.1016/j.geoderma.2006.01.004.
  • J. Stern, Y. Wang, B. Gu and J. Newman, Distribution and turnover of carbon in natural and constructed wetlands in the Florida Everglades. Applied Geochemistry, 22,1936–1948. 2007. https://doi.org/10.1016/j.apgeochem.2007.04.007.
  • R. Lal, Carbon sequestration. Philosophical Transactions of The Royal Society B Biological Sciences, 363, 815–830, 2008. https://doi.org/10.1098/rstb.2007.2185.
  • M.E. Sönmez ve M. Somuncu, Sultansazlığı’nın alansal değişiminin sürdürülebilirlik açısından değerlendirilmesi. Türk Coğrafya Dergisi 66,1-10. 2016.
  • IPBES,.The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services Report. 2019.
  • O.E. Sala, F.S. Chapin, J.J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L.F. Huenneke, R.B. Jackson, A. Kinzig, R. Leemans, D.M. Lodge, H.A. Mooney, M. Oesterheld, N.L. Poff, M.T. Sykes, B.H. Walker, M. Walker and D.H. Wall, Global biodiversity scenarios for the year 2100. Science 287 (5459), 1770–1774. 2000.
  • S. Beuel, M. Alvarez, E. Amler, K. Behn, D. Kotze, C. Kreye, C. Leemhuis, K. Wagner, D.K. Willy, S. Ziegler, M and Becker, A rapid assessment of anthropogenic distributions in east African wetlands. Ecological Indicators, 684–692. 2016. https://doi.org/10.1016/j.ecolind.2016.03.034.
  • M. Everard, Agricultural Management and Wetlands: An Overview. The Wetland Book: I: Structure and Function, Management and Methods, 1-12. 2016.
  • D. Mao, L. Luo, Z. Wang, M.C. Wilson, Y. Zeng, B. Wu and J. Wu, Conversions between natural wetlands and farmland in China: a multiscale geospatial analysis. Science of The Total Environment, 634, 550–560. 2018. https://doi.org/10.1016/j.scitotenv.2018.04.009.
  • S. Sanchez-Carrillo, D.G. Angeler, S. Cirujano and M. Alvarez-Cobelas, The Wetland, Its Catchment Settings and Socioeconomic Relevance : An Overview, In: S. Sánchez-Carrillo, and D. Angeler (eds) Ecology of Threatened Semi-Arid Wetlands. Wetlands: Ecology, Conservation and Management, vol 2. Springer, Dordrecht 3-23. 2010.
  • X. Zhu, Y. Yuan, M. Jiang, C. Song, Y. Li, G. Wang and M.L. Otte, Multi-element fingerprinting of soils can reveal conversion of wetlands to croplands, Science of The Total Environment, 752, 141997. 2021. https://doi.org/10.1016/j.scitotenv.2020.141997.
  • X. Liu, Y. Zhang, G. Dong and M. Jiang, Difference in carbon budget from marshlands to transformed paddy fields in the Sanjiang Plain. Northeast China. Ecological Engineering 137, 60–64. 2019. https://doi.org/ 10.1016/j.ecoleng.2018.03.013.
  • T. Zhang, A.X. Mei and Y.L. Cai, Application of spot remote sensing image in landscape classification of Chongming Dongtan. Urban Environment & Urban Ecology, 2, 45–47. 2004.
  • J. M. Bian and N. F. Lin, Application of the 3S technology on the landscape evolution in the wetland of lower reach of Huolin River Basin, Journal of Jilin University, 35, 221–225, 2005.
  • O. Erdem, Sulak Alanlar, Önemi, Temel Sorunları, Türkiye’nin Uluslararası Öneme Sahip Sulak Alanları, Haber Ekspres Gazetesi, 28 Şubat 2004.
  • F. Dadaşer-Çelik, H.G. Stefan and P.L. Brezonik, Dynamic hydrologic model of the Örtülüakar Marsh in Turkey. Wetlands 26, 1089–1102. 2006. https://doi.org/10.1672/02775212(2006)26[1089:DHMOTR]2.0.CO;2.
  • F. Dadaşer-Çelik, P.L. Brezonik, and H.G. Stefan, Hydrologic sustainability of the Sultan Marshes in Turkey. Water International, 32 (5), 856-876. 2007. https://doi.org/10.1080/02508060.2007.9672003.
  • F. Dadaşer-Çelik, P.L. Brezonik, and H.G. Stefan, Agricultural and environmental changes after irrigation management transfer in the Develi Basin, Turkey Irrigation and Drainage Systems, 22, 47–66. 2008. https://doi.org/10.1007/s10795-007-9032-4.
  • İ. Gürer, Kayseri Sultansazlığı Tabiatı Koruma Alanının Su Kullanım ve Yönetim Planlaması Araştırması. Son Rapor, Çevre ve Orman Bakanlığı, 32-54. 2004.
  • N. Karadeniz, Sultansazlığı örneğinde ıslak alanların çevre koruma açısından önemi üzerinde bir araştırma. Doktora Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Türkiye, 1995.
  • N. Karadeniz, Sultan Marshes, Turkey: A new approach to sustainable wetland management. In: Nelson J.G., Serafin R. (eds) National Parks and Protected Areas. NATO ASI Series (Series G: Ecological Sciences), vol 40. Springer, Berlin, Heidelberg. 1997.
  • F. Dadaşer-Çelik, M.E. Bauer, P.L. Brezonik and H.G. Stefan, Changes in the Sultan marshes ecosystem (Turkey) in satellite images 1980–2003, Wetlands 28 (3), 852-865. 2008. https://doi.org/10.1672/07-182.1.
  • M.H. Kesikoğlu, U.H. Atasever, A. Kesikoğlu, A.E. Karkınlı, C. Ozkan ve E. Beşdok, Sultan Sazlığı Milli Parkı Ramsar bölgesi arazi örtüsünün belirlenmesi Boosting sınıflandırma yaklaşımı, TUFUAB VIII. Teknik Sempozyumu, 21-23 Mayıs 2015 Konya, Türkiye, 2015.
  • N. Jouma and F. Dadaşer-Çelik, Spatiotemporal changes at the Sultan Marshes ecosystem (Turkey) from 1987 to 2013, Ecoloji 2017, Kayseri, Türkiye, 11-13 May 2017.
  • DSİ. Kayseri Develi-Yeşilhisar Ovası Revize Hidrojeolojik Etüd Raporu. DSİ XII. Bölge Müdürlüğü, Kayseri, 1-19. 1995.
  • Aksoy, A., Demirezen, D., 2003. Sultan Sazlığı ve Çevresindeki Sucul Ekosistemlerde Ağır Metal Kirliliğinin İncelenmesi. DPT Projesi.
  • U. Özesmi ve İ. Gürer, Sultan Sazlığı: Biodiversity and natural resources management pilot GEF-II project in Turkey. Journal of IUCN, USA. 1-15. 2003.
  • T. Meriç ve S. Çağırankaya, Sulak Alanlar. Orman ve Su İşleri Bakanlığı, Doğa Koruma ve Milli Parklar Genel Müdürlüğü, Kayıhan Ajans, Ankara. 2013.
  • C.K. Ulusoy, M. Yılmaz, E. Erginöz and U.D. Tursun, Develi (Kayseri) Belediyesi, Yeraltısuyu Kullanımı ÇED Ön Araştırma Raporu. İller Bankası Genel Müdürlüğü İçmesuyu Dairesi Başkanlığı, Ankara, 8, 12-19, 33-36, 59-66, 74. 2003.
  • Topraksu Genel Müdürlüğü, Kayseri İli Toprak Kaynağı Envanter Raporu. Tarım Bak. Yay. No: 183. Topraksu Gn. Md. Yay. No: 268. Ankara. 1984.
  • F.E. Yıldız, Kayseri-Sultan Sazlığı Sulak Alanı’nda Yeraltı ve Yerüstü Suları İlişkisinin Belirlenmesi. Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, 218 s, Ankara. 2007.
  • D. W. Nelson and L. E. Sommers, Total Carbon, Organic Carbon, and Organic Matter. Chapter 34. In: J. M. Bigham et al. (ed.) Soil Science Society of America and American Society of Agronomy. Methods of Soil Analysis. Part 3. Chemical Methods-SSSA Book Series no. 5. Madison, WI. p 1001-1006, 1996.
  • G.R. Blake and K.H. Hartge, Bulk density. In: Klute, A., Ed., Methods of Soil Analysis, Part 1—Physical and Mineralogical Methods, 2nd Edition, Agronomy Monograph 9, American Society of Agronomy—Soil Science Society of America, Madison, pp. 363-382. 1986.
  • G. Bouyoucos, Hydrometer method improved for making particle size analysis of soils. Agronomy Journal 54, 464–465. 1962. https://doi.org/ 10.2134/agronj1962.00021962005400050028x
  • A. Walkley and I.A. Black, An examination of the Degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63, 251-263. 1934. https://doi.org/10.1097/00010694-193401000-00003.
  • W.D. Kemper and R.C. Rosenau, Aggregate Stability and Size Distribution, In A. Klute et al., Methods of Soil Analysis, Part 1. Physical and Minerological Methods, 425-442, 2nd Edition, Agronomy Monograph, Soil Science of America, Madison, USA. 1986.
  • W. Pluske, D. Murphy and J. Sheppard, Note on Total organic carbon. http://soilquality.org.au/factsheets/organic-carbon (Accessed::10.09.2019), 2013.
  • Zar, H.J., Biostatistical Analysis. 3rd Edition, Prentice Hall, New Jersey: 662 p. 1996.
  • J. Yang, J. Liu, X. Hua, X. Lia, Y. Wang and H. Li, Changes of soil organic carbon, nitrogen and phosphorus concentrations under different land uses in marshes of Sanjiang Plain. Acta Ecologica Sinica, 33, 332–337. 2013. https://doi.org/10.1016/j.chnaes.2013.09.007.
  • C. Santin, M. Gonzalez-Perez, X.L. Otero, P. Vidal-Torrado, F. Macias and M.A. Alvarez, Characterization of humic substances in salt marsh soils under sea rush (Juncus maritimus). Estuarine, Coastal and Shelf Science, 79, (3), 541–548. 2008. https://doi.org/10.1016/j.ecss.2008.05.007.
  • F K.L. Page and R.C. Dalal, Contribution of natural and drained wetland systems to carbon stocks, CO2, N2O, and CH4 fluxes: an Australian perspective. Soil Research 49 (5), 377–388. 2011. https://doi.org/10.1071/SR11024.
  • M.Tufa, A. Melese and W. Tena, Effects of land use types on selected soil physical and chemical properties: The case of Kuyu District, Ethiopia. Eurasian Journal of Soil Science, 8 (2), 94 – 109. 2019. https://doi.org/10.18393/ejss.510744.
  • T. Dube and M. Chitiga, Human impacts on macrophyte diversity, water quality and some soil properties in the Madikane and Dufuya Wetlands of Lower Gweru, Zimbabwe. Appl. Ecol. Environ. Res. 9(1):85-99. 2011. https://doi.org/10.15666/aeer/0901_085099.
  • Z.G. Mainuri and J.O. Owino, Effects of land use and management on aggregate stability and hydraulic conductivity of soils within River Njoro Watershed in Kenya. International Soil and Water Conservation Research, 1 (2), 80, 87. 2013. https://doi.org/10.1016/S2095-6339(15)30042-3.
  • E.C. Tommerup, The field description of the physical properties of soils, first commission of commission I–Soil Physics–of the International Society of Soil Science, pp. 155–158. International Society of Soil Science, Versailles, France. 1934.
  • M.K. Abbasi, M. Zafar and S.R. Khan, Influence of different land-cover types on the changes of selected soil properties in the mountain region of Rawalakot Azad Jammu and Kashmir. Nutrient Cycling in Agroecosystems, 78 (1), 97-110. 2007. https://doi.org/10.1007/s10705-006-9077-z.
  • H.F. Dong, J.B. Yu, Z.G. Sun, X.J. Mu, X.B. Chen, P.L. Mao, C.F. Wu and B. Guan, Spatial distribution characteristics of organic carbon in the soil-plant systems in the Yellow River estuary tidal flat wetland. Environ Sci., 31, (6), 1594-1599. 2010.
  • IPCC,. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Chapter Two: Generic Methodologies Applicable to Multiple Land Use Categories, https://www.ipccnggip.iges. or.jp/public/2019rf/pdf/4_Volume4/19R_V4_Ch02_Generic%20Methods.pdf (Accessed: 15th, September 2020). 2019