Online LDA based brain-computer interface system to aid disabled people

Online LDA based brain-computer interface system to aid disabled people

This paper aims to develop brain-computer interface system based on electroencephalography that can aid disabled people in daily life. The system relies on one of the most effective event-related potential wave, P300, which can be elicited by oddball paradigm. Developed application has a basic interaction tool that enables disabled people to convey their needs to other people selecting related objects. These objects pseudo-randomly flash in a visual interface on computer screen. The user must focus on related object to convey desired needs. The system can convey desired needs correctly by detecting P300 wave in acquired 14-channel EEG signal and classifying using linear discriminant analysis classifier just in 15 seconds. Experiments have been carried out on 19 volunteers to validate developed BCI system. As a result, accuracy rate of 90.83% is achieved in online performance.

___

  • Ashari, R. B., Al-Bidewi, I. A., & Kamel, M. I. (2011). Design and simulation of virtual telephone keypad control based on brain computer interface (BCI) with very high transfer rates. Alexandria Engineering Journal, 50(1), 49–56.
  • Association, W. M., & others. (2001). World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Bulletin of the World Health Organization, 79(4), 373.
  • Bai, L., Yu, T., & Li, Y. (2015). A brain computer interface-based explorer. Journal of Neuroscience Methods, 244, 2–7. Berlad, I., & Pratt, H. (1995). P300 in response to the subject’s own name. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 96(5), 472–474.
  • Blasco, J. L. S., Iáñez, E., Ubeda, A., & Azor’\in, J. M. (2012). Visual evoked potential-based brain--machine interface applications to assist disabled people. Expert Systems with Applications, 39(9), 7908–7918.
  • Borghetti, D., Bruni, A., Fabbrini, M., Murri, L., & Sartucci, F. (2007). A low-cost interface for control of computer functions by means of eye movements. Computers in Biology and Medicine, 37(12), 1765–1770.
  • Bougrain, L., Duvinage, M., & Klein, E. (2012). Inverse reinforcement learning to control a robotic arm using a Brain-Computer Interface. Research Report, 1–6.
  • Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.
  • Butterworth, S. (1930). On the theory of filter amplifiers. Wireless Engineer, 7(6), 536–541.
  • Citi, L., Poli, R., Cinel, C., & Sepulveda, F. (2008). P300-Based BCI Mouse With Genetically-Optimized Analogue Control. IEEE Transactions On Neural Systems And Rehabilitation Engineering, 16(1), 51–61.
  • Combaz, A., & Van Hulle, M. M. (2015). Simultaneous Detection of P300 and Steady-State Visually Evoked Potentials for Hybrid Brain-Computer Interface. Plos One, 10(3), e0121481.
  • Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.
  • Donnerer, M., & Steed, A. (2010). Using a P300 Brain-Computer Interface in an Immersive Virtual Environment. Presence Teleoperators and Virtual Environments, 19(1), 12–24.
  • Duda, R., Hart, P., & D.G., S. (2012). Pattern Classification.
  • Esfahani, E. T., & Sundararajan, V. (2012). Classification of primitive shapes using brain--computer interfaces. Computer-Aided Design, 44(10), 1011–1019.
  • Farwell, L. A., & Donchin, E. (1988). Talking off the top of your head: toward a mental prothesis utilizing event-relatedpotencials. Electroencephalographic Clinical Neurophysiology, 70(6), 510–523.
  • Fazel-Rezai, R. (2007). Human error in P300 speller paradigm for brain-computer interface. In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE (pp. 2516–2519).
  • Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter, 11(1), 10–18.
  • Handy, T. C. (2005). Event-related potentials: A methods handbook. MIT press.
  • Hoffmann, U., Vesin, J., Ebrahimi, T., & Diserens, K. (2007). An efficient P300-based brain-computer interface for disabled subjects. Journal of Neuroscience Methods, 167(1), 115–125.
  • Hyvärinen, A., Karhunen, J., & Oja, E. (2004). Independent component analysis (Vol. 46). John Wiley & Sons.
  • İcscan, Z., & Dokur, Z. (2014). A novel steady-state visually evoked potential-based brain--computer interface design: character plotter. Biomedical Signal Processing and Control, 10, 145–152.
  • Jin, J., Allison, B. Z., Wang, X., & Neuper, C. (2012). A combined brain-computer interface based on P300 potentials and motion-onset visual evoked potentials. Journal of Neuroscience Methods, 205(2), 265–276. https://doi.org/10.1016/j.jneumeth.2012.01.004.
  • Kaplan, A. Y., Shishkin, S. L., Ganin, I. P., Basyul, I. A., & Zhigalov, A. Y. (2013). Adapting the P300-based brain--computer interface for gaming: a review. IEEE Transactions on Computational Intelligence and AI in Games, 5(2), 141–149.
  • Kaufmann, T., & Hammer, E. M. (n.d.). ERPs contributing to classification in the ” P300 ” BCI, 49–52.
  • Kolev, V., Demiralp, T., Yordanova, J., Ademoglu, A., & Isoglu-Alkaç, Ü. (1997). Time-frequency analysis reveals multiple functional components during oddball P300. NeuroReport, 8(8), 2061–2065.
  • Koo, B., Nam, Y., & Choi, S. (2014). A hybrid EOG-P300 BCI with dual monitors. 2014 International Winter Workshop on Brain-Computer Interface, BCI 2014.
  • Kutlu, Y., Yayik, A., Yildirim, E., & Yildirim, S. (2015). Orthogonal Extreme Learning Machine Based P300 Visual Event-Related BCI. In International Conference on Neural Information Processing (pp. 284–291). İstanbul: Springer International Publishing.
  • Long, J., Li, Y., Yu, T., & Gu, Z. (2012). Target selection with hybrid feature for BCI-based 2-D cursor control. IEEE Transactions on Biomedical Engineering, 59(1), 132–140.
  • Makeig, S., Bell, A. J., Jung, T.-P., Sejnowski, T. J., & others. (1996). Independent component analysis of electroencephalographic data. Advances in Neural Information Processing Systems, 145–151.
  • Masson, P., & Berger, L. (1924). Epitheliomas a double metaplasie de la parotide. Bull Assoc Fr Etude Cancer, 13, 366–373.
  • Mesulam, M., & others. (2000). Principles of behavioral and cognitive neurology. Oxford University Press.
  • Mika, S., Ratsch, G., Weston, J., Scholkopf, B., & Mullers, K.-R. (1999). Fisher discriminant analysis with kernels. In Neural Networks for Signal Processing IX, 1999. Proceedings of the 1999 IEEE Signal Processing Society Workshop. (pp. 41–48).
  • Postelnicu, C. C., Talaba, D., & Toma, M. I. (2011). Controlling a robotic arm by brainwaves and eye movement. IFIP Advances in Information and Communication Technology, 349 AICT, 157–164.
  • Potentials, A. B. (2011). Robot Control Using Anticipatory Brain Potentials. Automatika--Journal for Control, Measurement, Electronics, Computing and Communications, 52(1), 20–30.
  • Rakotomamonjy, A., & Guigue, V. (2008). BCI Competition III : Dataset II - Ensemble of SVMs for BCI P300 Speller. Biomedical Engineering, IEEE Transactions on, 55(3), 1147–1154.
  • Renard, Y., Lotte, F., Gibert, G., Congedo, M., Maby, E., Delannoy, V., … Lécuyer, A. (2010). OpenViBE: an open-source software platform to design, test, and use brain-computer interfaces in real and virtual environments. Presence: Teleoperators and Virtual Environments, 19(1), 35–53.
  • Rivet, B., Souloumiac, A., Gibert, G., & Attina, V. (2008). “P300 Speller” Brain-Computer Interface: Enhancement of P300 Evoked Potential By Spatial Filters. In 16th European Signal Processing Conference (pp. 1–5). Ron-angevin, R., & Silva-sauer, L. (2006). Proposal of a P300-based BCI speller using a predictive text system. Scriperpress.
  • Shi, J., Shen, J., Ji, Y., & Du, F. (2012). A submatrix-based P300 brain-computer interface stimulus presentation paradigm. Journal of Zhejiang University-Science C-Computers & Electronics, 13(6), 452–459. https://doi.org/10.1631/jzus.C1100328
  • Su, Y., Dai, J., Liu, X., Xu, Q., Zhuang, Y., Chen, W., & Zheng, X. (2010). EEG Channel Evaluation and Selection by Rough Set in P300 BCI. Journal of Computational Information Systems, 6, 1727–1735.
  • Subaşıcıoğlu, F. (2008). A Research on “Disability Awareness” in Information and Records Management Departments of Universities. Bilgi Düyası, 9(2), 399–430.
  • Surdilovic, T., & Zhang, Y.-Q. (2006). Convenient intelligent cursor control web systems for Internet users with severe motor-impairments. International Journal of Medical Informatics, 75(1), 86–100.
  • Sutton, S., Braten, M., Zubin, J., & John, E. R. (1965). Evoked-potentials correlates of stimulus uncertainty. Science, 150(3700), 1187–1188.
  • Townsend, G., LaPallo, B. K., Boulay, C. B., Krusienski, D. J., Frye, G. E., Hauser, Ck., … Sellers, E. W. (2010). A novel P300-based brain--computer interface stimulus presentation paradigm: moving beyond rows and columns. Clinical Neurophysiology, 121(7), 1109–1120.
  • Tsuda, M., Lang, Y., & Wu, H. (2014). Analysis and Identification of the EEG Signals from Visual Stimulation. Procedia Computer Science, 35, 1292–1299.
  • Velasco-Álvarez, F., Ron-Angevin, R., da Silva-Sauer, L., & Sancha-Ros, S. (2013). Audio-cued motor imagery-based brain--computer interface: Navigation through virtual and real environments. Neurocomputing, 121, 89–98.
  • Vourvopoulos, A., & Liarokapis, F. (2014). Evaluation of commercial brain--computer interfaces in real and virtual world environment: A pilot study. Computers & Electrical Engineering, 40(2), 714–729.
  • Walter, W., Cooper, R., Aldridge, V., & McCallum, W. (1964). Contingent negative variation: an electric sign of sensori-motor association and expectancy in the human brain. Nature.
Natural and Engineering Sciences-Cover
  • ISSN: 2458-8989
  • Başlangıç: 2015
  • Yayıncı: Cemal TURAN
Sayıdaki Diğer Makaleler

Length- weight relationship and condition factor of Ankara barb Capoeta angorae (Hankó, 1925) in Asi River (Hatay, Turkey)

Sibel ALAGÖZ ERGÜDEN, Cemal TURAN

Characterization of Wastewaters Obtained from Hatay Tanneries

Şana SUNGUR, Abdullah ÖZKAN

Seasonal Changes in the Chemical Composition of the Beadlet Anemones (Actinia equina) from Mersin Bay, Northeastern Mediterranean coast of Turkey

Kemal YATKIN, Deniz AYAS, Ali Rıza KÖŞKER, Mustafa DURMUŞ, Yılmaz UÇAR

First Scientific Records of the Invasive Red Swamp Crayfish, Procambarus clarkii (Girard, 1852) (Crustacea: Cambaridae) in Malta, a Threat to Fragile Freshwater Habitats

Noel VELLA, Adriana VELLA, Clare Marie MİFSUD

A Comparison Study of Sinusoidal PWM and Space Vector PWM Techniques for Voltage Source Inverter

Ömer TÜRKSOY, Ünal YILMAZ, Adnan TAN, Ahmet TEKE

Emotion Analysis using Different Stimuli with EEG Signals in Emotional Space

Yaşar DAŞDEMİR, Esen YILDIRIM, Serdar YILDIRIM

Genetic Structure of Anchovy Engraulis encrasicolus in the Adriatic Sea using Microsatellite DNA Analysis

Cemal TURAN, Serap S. TUNCAY, Alen SOLDO, Neven BOSNİC, Fevzi BARDAKÇI

Isolation of cellulose and hemicellulose by using alkaline peroxide

Erdem TEZCAN, Oya GALİOĞLU ATICI

Effects of Lead and Selenium Interaction on Acetylcholinesterase Activity in Brain and Accumulation of Metal in Tissues of Oreochromis niloticus (L., 1758)

Gülsemin ŞEN, Sahire KARAYTUĞ

On the occurrence of blue button, Porpita porpita (Cnidaria: Hydrozoa) from Levantine coast of Turkey

Özlem SAYGIN