Estimation of monthly precipitation based on machine learning methods by using meteorological variables

Aims: The aim of this study is to estimate monthly precipitation by support vector regression and the nearest neighbourhood methods using meteorological variables data of Chabahar station. Methods and Results: Monthly precipitation was modelled by using two support vector regression and the nearest neighbourhood methods based on the two proposed input combinations. Conclusions: The results showed that the support vector regression method using normalized polynomial kernel function has higher accuracy and it has lower estimation error than the nearest neighbour method. Significance and Impact of the Study: Precipitation is one of the most important parts of the water cycle and plays an important role in assessing the climatic characteristics of each region. Modelling of monthly precipitation values for a variety of purposes, such as flood and sediment control, runoff, sediment, irrigation planning, and river basin management, is very important. The modelling of precipitation in each region requires the existence of accurately measured historical data such as humidity, temperature, wind speed, etc. Limitations such as insufficient knowledge of precipitation on spatial and temporal scales as well as the complexity of the relationship between precipitation-related climatic parameters make it impossible to estimate precipitation using conventional inaccurate and unreliable methods.

___

Anonymous, (2012) Chaharmahal and Bakhtiari Meteorological Administration. Retrieved June 26, 2019, from https://www.chaharmahalmet.ir/ .

Anonymous, (2016) Water challenges of Iran. Retrieved June 16, 2019, from https://water.fanack.com/iran/water-challenges-ofiran/ .

Asghari K, Nasseri M (2014) Spatial rainfall prediction using optimal features selection approaches. Hydrol. Res. 46 (3): 343-355.

Bostan PA, Heuvelink GB, Akyurek SZ (2012) Comparison of regression and kriging techniques for mapping the average annual precipitation of Turkey. Int. J. Appl. Earth. Obs. 19: 115-126.

Breiman L (2001) Random Forests. Mach. Learn. 45(1): 5- 32.

Bushara NO (2016) Rainfall forecasting in Sudan using computational inteligence. PhD Thesis, Sudan University of Science and Technology, 177 p.

Eyvazi M, Mosaedi A (2012) An investigation on spatial pattern of annual precipitation in Golestan province by using deterministic and geostatisticcs model. J. Water Soil, 26 (1): 53-64.

Hall MA (1999) Correlation-based feature selection for machine learning. PhD Thesis, University of Waikato, Department of Computer Science, 178 p.

Ji SY, Sharma S, Yu B, Jeong DH (2012) Designing a rulebased hourly rainfall prediction model. IEEE 13th International Conference on Information Reuse & Integration (IRI). pp. 303-308.

Khandelwal N, Davey R (2012) Climatic assessment of Rajasthan’s region for drought with concern of data mining techniques. Int. J. Eng. Res. App. 2 (5): 1695- 1697.

Olaiya F, Adeyemo AB (2012) Application of data mining techniques in weather prediction and climate change studies. Int. J. Inf. Eng. Elec. Bus. 4 (1): 51.

Sethi N, Garg K (2014) Exploiting data mining technique for rainfall prediction. Int. J. of Comp. Sci. Information Tech. 5 (3): 3982-3984.

Sharif MH, Burn D (2006) Simulating climate change scenarios using an improved K-nearest neighbor model. J. Hydrol. 325: 179-196.

Sivaramakrishnan TR, Meganathan S (2012) Point rainfall prediction using data mining technique. Res. J. Ap. Sci. Eng. Tech. 4 (13): 1899-1902.

Wang ZL, Sheng HH (2010) Rainfall prediction using generalized regression neural network: case study Zhengzhou. International conference on computational and information sciences. pp. 1265- 1268.

Zaw WT, Naing TT (2008) Empirical statistical modeling of rainfall prediction over Myanmar. W. Acad. Sci., Eng. Techn. 2 (10): 500-504.
Mustafa Kemal Üniversitesi tarım bilimleri dergisi (online)-Cover
  • ISSN: 1300-9362
  • Yayın Aralığı: 3
  • Başlangıç: 1996
  • Yayıncı: Mustafa Kemal Üniversitesi Ziraat Fakültesi
Sayıdaki Diğer Makaleler

Safari Sunset ve Gold Strike protea çeşitlerinin çiçek kalitesi ile vazo ömrü üzerine uç alma ve üre uygulamalarının etkileri

Ferhat AVCI, OĞUZHAN ÇALIŞKAN, Fulya UZUNOĞLU

Çukurova koşullarında yüzeyüstü ve yüzeyaltı damla sulama yöntemiyle farklı su düzeylerinde sulanan patlıcan bitkisinin azot kullanım randımanının belirlenmesi

Engin GÖNEN, Çağatay TANRIVERDİ, Yeşim BOZKURT ÇOLAK, Attila (ve diğerleri) Yazar, Mete ÖZFİDANER

The use of universal kriging interpolation technique to determine groundwater levels in dry and wet years: A case study in a semi-arid region of Mahdia in Tunisia

Rania SOULA, Ali CHEBIL, Mahmut CETIN, Rajouene MAJDOUB

Farklı bitkilerden elde edilen uçucu yağların pamuk kırmızı örümceği (Tetranychus cinnabarinus Boisduval) (Acari: Tetranychidae) erginleri üzerinde akarisidal etkileri

Memiş KESDEK, Ayşe USANMAZ BOZHÜYÜK, Şaban KORDALİ

Arıtılmış atık su kalitesinin sulama suyu açısından ilgili mevzuatlar çerçevesinde değerlendirilmesi: Van ili örneği

Talip ÇAKMAKCI, Üstün ŞAHİN

TR63 bölgesi iklim koşullarının seracılık açısından irdelenmesi

A. Nafi BAYTORUN, Adil AKYÜZ, Ali ÇAYLI, Sait ÜSTÜN

Hatay ilinde ışık tuzağı ile belirlenen cicadellidae familyası türleri ve popülasyon yoğunlukları

Kamuran KAYA, Hüseyin BAŞPINAR

Comparison of two lateral move irrigation machines commonly used in Turkey in respect of water uniformity coefficient

Hüseyin T. GÜLTAŞ, Yeşim AHİ, Daniyal D. KÖKSAL, Murat KARAER

Çukurova koşullarında farklı su düzeylerinin ikinci ürün tatlı sorgumun biyokütle ve biyoetanol verimine etkileri

Muhammer DÜNDAR, Mustafa AĞAHAN ÜNLÜ, Celal YÜCEL ARİFE AVAĞ

Sera işletmelerinde ortaya çıkan tarımsal atıkların neden olacağı çevre sorunlarının belirlenmesi ve çözüm önerileri

Sedat BOYACI, Sinan KARTAL