ELEKTRİKLİ ARAÇ ENTEGRASYONUNUN DAĞITIM SİSTEMİNE ETKİLERİNİN İNCELENMESİ VE ŞARJ İSTASYONU ALTYAPISININ TAYİN EDİLMESİ

Günümüzde hızla artan nüfusun paralelinde yaşamsal ihtiyaçlara bağlı tüketimler için ortaya çıkan teknolojik gelişmeler ve sanayileşme ile enerji ihtiyacı her geçen gün artmaktadır. İlgili enerji ihtiyacı daha çok konvansiyonel kaynaklardan karşılanmakta ancak bu durum çevre kirliliğine sebebiyet vermektedir. Fosil yakıtların en çok tüketildiği ve doğal olarak karbon emisyonuna neden olan alanlardan biri olan ulaşım sektöründe ise ciddi değişimler meydana gelmektedir. Özellikle fosil kaynaklı araçlar yerini Elektrikli Araçlara (EA) bırakmakta ve birçok marka EA modelleri geliştirmeye yönelik önemli adımlar atmaktadır. Ancak EA’ların üretim ve kullanımının artması enerjiye olan ihtiyacı da katlamaktadır. Aynı zamanda bu araçların şarj ihtiyaçları için kurulması gereken şarj istasyonu sayısı ve yatırım gerektiren altyapı hizmetlerinin planlanmasını zorunlu kılmaktadır. Bu çalışmada, Türkiye’de hizmet veren bir dağıtım sistemi operatörlüğünde işletilen ve EA şarj istasyonu kurulması planlanan otopark alanları için DIgSILENT PowerFactory V15.1 programında detaylı analizler gerçekleştirilmiştir. Türkiye’de hizmet veren bir otopark işletmecisi ile ortak çalışılacak alanlarda altyapı hizmetlerinin aksamaması ve olası güç sistemi arızalarının önüne geçebilmek amacıyla güç akışı analiz sonuçları paylaşılmıştır. Hatlardan akan aktif, reaktif güçler ve transformatör yüklenmelerine göre öneriler sunulmuştur.

THE EFFECTS OF ELECTRIC VEHICLE INTEGRATION ON THE DISTRIBUTION SYSTEM AND DETERMINATION OF CHARGING STATION INFRASTRUCTUR

Today, the need for energy is increasing day by day with the technological developments and industrialization that have emerged in order to keep up with the consumption related to the vital needs that increase in parallel with the rapidly increasing population. This emerging energy need is mostly provided by non-renewable resources and also causes environmental pollution. Serious changes are occurring in the transportation sector, which is one of the areas where fossil fuels are consumed the most and naturally causes carbon emissions. In particular, fossil-based vehicles are replaced by Electric Vehicles (EVs), and many brands are taking important steps to develop EV models. However, the increase in the production and use of EVs also increases the need for energy. At the same time, it makes it necessary to plan the number of charging stations and infrastructure services that require investment for the charging needs of these vehicles. In this study, detailed analyzes were carried out in the DIgSILENT PowerFactory V15.1 program for the parking areas operated by a distribution system operator in Turkey and where an EV charging station is planned to be installed. Power flow analysis results were shared in order to prevent disruption of infrastructure services and possible power system failures in areas to be worked in partnership with a parking lot operator serving in Turkey. Suggestions are presented according to the active and reactive powers flowing from the lines and transformer loads.

___

  • Ahmaad F., Iqbal A., Ashraf I., Marzband M., Khan I., 2022. Placement of Electric Vehicle Fast Charging Stations using Grey Wolf Optimization in Electrical Distribution Network. 2022 IEEE International Conference on PowerElectronics, Smart Grid, and Renewable Energy.
  • Araujo A., Araujo D., Vasconcelos A., Rosas P., Medeiros L., Conceicao J., 2021. A Proposal for Technical and Economic Sizing of Energy Storage System and PV for EV Charger Stations with Reduced Impacts on the Distribution Network. CIRED 2021 Conference.
  • Arnold, M., Provan, S., 2019. German industrial output fall exacerbates fears of recession. Financial Times.
  • Bass, R., Harley, R., Lambert, F., Rajasekaran, V., & Pierce, J., 2001. Residential harmonic loads and EV charging. In: Proceedings of the 2001 IEEE Power Engineering Society Winter Meeting, Volume 3, 803-808.
  • Bentley E. C.; Suwanapingkarl P.; Weerasinghe S.; Jiang T.; Putrus G. A.; Johnston D.,2010. The interactive effects of multiple EV chargers within a distribution network.
  • Berisha, S., Karady, G., Ahmad, R., Hobbs, R. and Karner, D., 1996.Current Harmonics Generated by Electric Vehicle Battery Chargers. Proceedings of the 1996 International Conference on Power Electronics, Drives and Energy Systems for Industrial Growth, New Delhi, 8-11 January 1996, 584-589.
  • BP Statistical Review of World Energy, 2021.
  • Das, H. S., Rahman, M. M., Li, S., & Tan, C. W. (2020). Electric vehicles standards, charging infrastructure, and impact on grid
  • Integration: A technological review. Renewable and Sustainable Energy Reviews, 120, Article 109618. https://doi:10.1016/j.rser.2019.109618
  • Diaz, C., Ruiz, F., & Patino, D., 2018. Smart Charge of an Electric Vehicles Station: A Model Predictive Control Approach. In: Proceedings of the 2018 IEEE Conference on Control Technology and Applications (CCTA), 54-59
  • Enerji Atlası, 2022. Türkiye’deki Elektrikli Otomobil Sayıları (https://www.enerjiatlasi.com/haber/turkiye-deki-elektrikli-otomobil-sayisi)
  • EPDK, Kalite Faktörü Uygulaması, 2021. https://www.epdk.gov.tr/Detay/Icerik/4-283/kalite-faktoru-uygulamasina-iliskin-usul-ve-esasl
  • European Commission, 2019. Communication from the commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal [Online].
  • European Green Deal, 2019. https://ec.europa.eu/info/sites/info/files/european-green-deal-communication_en.pdf.
  • EPDK, Kalite Faktörü Uygulaması, 2021. https://www.epdk.gov.tr/Detay/Icerik/4-283/kalite-faktoru-uygulamasina-iliskin-usul-ve-esasl
  • Gómez, J. Carlos, Morcos, Medhat M., 2013. Impact of EV Battery Chargers on the Power Quality of Distribution Systems 2013. IEEE.
  • Guven A.F, Akbaşak S.B., 2021. Elektrikli Araçlarda DA hızlı Şarj Ünitelerinin Şebeke Altyapısına Etkilerinin İncelenmesi.
  • International Energy Agency, 2022. Electric cars fend off supply challenges to more than double global sales, Leonardo Paoli, Clean Energy Technologies analyst Timur Gül, Head of the Energy Technology Policy Division Commentary.
  • Koç Medya, 2021. https://www.koc.com.tr/medya-merkezi/haberler/2021/turkiyenin-en-buyuk-yatirimi-yine-ford-otosandan.
  • Liu Yanping, Li Xin, Liang Yi, Shunqi Zeng, 2021. Assessment of Impacts on Integration of Disorderly
  • EV Charging Load to Flexible Distribution Network. 2021 11th International Conference on Power, Energy and Electrical Engineering.
  • Lucas Alexandre, Fausto Bonavitacola, Evangelos Kotsakis, Gianluca Fulli, 2015. Grid harmonic impact of multiple electric vehicle fast charging, Electric Power Systems Research,Volume 127,2015,Pages 13-21.
  • Nafi Mahmud I., Tabassum S., Hassan Rafid Q., Abid F., 2022. Effect of Electric Vehicle Fast Charging Station on Residential Distribution Network in Bangladesh. IEEE 2021 2021 5th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT) Military Institute of Science and Technology (MIST), Dhaka-1216, Bangladesh
  • Rahimpour E., Azizian D., 2006. Analysis of temperature distribution in castresin dry-type transormers, Electr Eng (2007),pp.301-309,April 2006.
  • Sanal Savunma TOGG, 2022. https://www.sanalsavunma.com/togg-2022-yili-sonunda-seri-uretim/
  • Sen Qian;Xiaojing Zhang;Chuan Chen;Hongkang Wang;Jinghong Guo;Yang Xu., 2021.Ageing Evaluation of the Distribution Transformer under Varying Load due to Electric Vehicle Charging.
  • Shaker㧘 Yomna O., 2011. Sensitivity Study of Transient Temperature of Cast-Resin Dry Type Transformer. Electric Power and Energy Conversion Systems (EPECS), 2011 2nd International Conference on,15-17 Nov. 2011.
  • Staats, P. T., Grady, W. M., Arapostathis, A., & Thallam, R. S., 1997. A statistical method for predicting the net harmonic currents generated by a concentration of electric vehicle battery chargers. IEEE Transactions on Power Delivery, 12(3), 1258-1266.
  • Ucer, E., Kisacikoglu, M. C., & Cafer Gurbuz, A. (2018). Learning EV Integration Impact on a Low Voltage
  • Distribution Grid. In: Proceedings of the 2018 IEEE Power and Energy Society General Meeting (PESGM),
  • 1-5. doi:10.1109/PESGM.2018.8586208
  • Wang Lu;Wan Youhong;Weitao Cao;Chunxia Fan, 2019. Chinese Automation Congress (CAC). Optimizing Strategy of Spatial Orderly Charging for EVs Based on Complex Network Theory.
  • Xu Y., Chen Z., Peng F. and Beshir M., 2014.
  • Harmonic analysis of electric vehicle loadings on distribution system. 2014 IEEE International Conference on Control Science and Systems Engineering, 2014, pp. 145-150.
  • Xue Ping;Xiang Yue, Shafie-khah Miadreza, Zhou Run, 2022. Robust Joint Planning of Electric Vehicle Charging
  • Infrastructures and Distribution Networks. IEEE Conference Paper.
  • Xueqian Ding;Wang Ning, 2012. Analysis of the Dry-type Transformer Temperature Field Based on Fluid-solid Coupling.Second International Conference on Instrumentation, Measurement, Computer, Communication and Control.
Mühendislik Bilimleri ve Tasarım Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2010
  • Yayıncı: Süleyman Demirel Üniversitesi Mühendislik Fakültesi