Korneal Endotelyal Doku Mühendisliği

Korneanın saydamlığı korneal endotelin stromal hidrasyonu düzenleyen bariyer ve pompa fonksiyonları aracılığıyla korunur. İnsan korneal endotel hücreleri in vivo olarak sınırlı çoğalma kapasitesine sahiptir. Yaşla birlikte insan korneal endotelhücre sayısı gittikçe azalır. Cerrahi - cerrahi dışı travma ve akut açı kapanması glokomundan sonra da endotel hasarınabağlı korneal endotel hücre sayısında dramatik düşüş görülür. Endotelyal hücrelerin çoğalma kapasitesinin yetersizliği nedeniyle kornea endotel yetmezliği geriye dönüşümsüz kornea ödemine neden olur. Cerrahi tedavi son 20 yılda geleneksel penetran keratoplastiden, hastanın işlevsel olmayan korneal endotel hücre tabakasının, sağlıklı donör kornea endotel tabakasıile yer değiştirildiği birçok yeni endotelyal keratoplasti prosedürüne dönüşmüştür. Ancak tüm keratoplasti prosedürleri birdonör kornea gerektirir ve dünya çapındaki donör kornea yetersizliği bu uygulamaları sınırlar. Donör kornea yetersizliğininüstesinden gelmek için kültüre korneal endotel hücreleri kullanılarak korneal endotel hücre tabakalarının transplantasyonudeneysel çalışmalarda uygulanmıştır. Bu derleme, kültüre korneal endotel hücreleri ile kornea endotel doku mühendisliğihakkında güncel bilgileri sunmaktadır.

Corneal Endothelial Tissue Engineering

Transparency of the cornea is maintained by regulation of stromal hydration through the barrier and pump functions of thecorneal endothelium. Human corneal endothelial cells (CECs) normally have a limited proliferative capacity in vivo. Humancorneal endothelial cells gradually decrease with age throughout life and decline dramatically after endothelial damage dueto; surgical and non surgical trauma, and acute angle-closure glaucoma. Therefore, corneal endothelial deficiency resultsin irreversible corneal edema because of the relative lack of endothelial cell proliferative capacity. Over the last two decades,the surgical treatment has evolved from traditional penetrating keratoplasty to several new endothelial keratoplasties procedures to replace patient's dysfunctional human corneal endothelial cells with a healthy one that contains varying amountsof the posterior corneal stroma or no corneal stroma from a cadaveric donor. However, all of these keratoplasty proceduresrequire a donor cornea and the worldwide shortage of corneas limits its application. To overcome the problems of donorcornea shortage, the application of corneal endothelial cell sheet transplantation using cultured human corneal endothelialcells has been attempted in experimental studies. This review presents current knowledge on the tissue engineering of cornealendothelium using cultured human corneal endothelial cells.

Kaynakça

1. Zhu C, Joyce NC. Proliferative response of corneal endothelial cells from young and older donors. Invest Ophthalmol Vis Sci 2004;45:1743-51.

2. Mimura T, Yamagami S, Amano S. Corneal endothelial regeneration and tissue engineering. Prog Retin Eye Res 2013;35:1-17.

3. Ziaei M, Zhang J, Patel D, McGhee CN. Umbilical Cord Stem Cells in the Treatment of Corneal Disease. Surv Ophthalmol 2017; S0039-6257(16):30207-7.

4. De Roo AK, Wouters J, Govaere O, Foets B, van den Oord JJ. Identification of Circulating Fibrocytes and Dendritic Derivatives in Corneal Endothelium of Patients With Fuchs' Dystrophy. Invest Ophthalmol Vis Sci 2017;58(1):670-81.

5. Kim BZ, Meyer JJ, Brookes NH, Moffatt SL, et al. New Zealand trends in corneal transplantation over the 25 years 1991-2015. Br J Ophthalmol 2016-309021.

6. Zhu YT, Chen HC, Chen SY, Tseng SC. Nuclear p120 catenin unlocks mitotic block of contact-inhibited human corneal endothelial monolayers without disrupting adherent junctions. J Cell Sci 2012;125:3636- 48.

7. Pistsov MY, Sadovnikova EY, Danilov SM. Human corneal endothelial cells: isolation, characterization and long-term cultivation. Exp Eye Res 1988;47:403- 14.

8. Li W, Sabater AL, Chen YT, et al. A novel method of isolation, preservation, and expansion of human corneal endothelial cells. Invest Ophthalmol Vis Sci 2007;48:614-20.

9. Lee JG, Kay EP. FGF-2-mediated signal transduction during endothelial mesenchymal transformation in corneal endothelial cells. Exp Eye Res 2006;83:1309- 16.

10. Engelmann K. Bohnke M. Friedl P. Isolation and longterm cultivation of human corneal endothelial cells. Invest Ophthalmol Vis Sci 1988;29:1656-62.

11. Joyce NC, Zhu CC. Human corneal endothelial cell proliferation: potential for use in regenerative medicine. Cornea 2004;23:8-19.

12. Zhu YT, Hayashida Y, Kheirkhah A, He H, Chen SY, Tseng SC. Characterization and comparison of intercellular adherent junctions expressed by human corneal endothelial cells in vivo and in vitro. Invest Ophthalmol Vis Sci 2008;49:3879-3886.

13. Yamaguchi M, Ebihara N, Shima N, et al. Adhesion, migration, and proliferation of cultured human corneal endothelial cells by laminin-5. Invest Ophthalmol Vis Sci 2011;52: 679-84.

14. Miyata K, Drake J, Osakabe Y, et al. Effect of donor age on morphologic variation of cultured human corneal endothelial cells. Cornea 2001;20:59-63.

15. Yue BY, Sugar J, Gilboy JE, Elvart JL. Growth of human corneal endothelial cells in culture. Invest Ophthalmol Vis Sci 1989;30:248-53.

16. Chen KH, Azar D, Joyce NC. Transplantation of adult human corneal endothelium ex vivo: a morphologic study. Cornea 2001:20;731-7.

17. Blake DA, Yu H, Young DL, Caldwell DR. Matrix stimulates the proliferation of human corneal endothelial cells in culture. Invest Ophthalmol Vis Sci 1997;38: 1119-29.

18. Shima N. Kimoto M. Yamaguchi M. Yamagami S. Increased proliferation and replicative lifespan of isolated human corneal endothelial cells with l-ascorbic acid 2-phosphate. Invest Ophthalmol Vis Sci 2011; 52:8711-8717.

19. Joyce NC, Zhu CC, Harris DL. Relationship among oxidative stress, DNA damage, and proliferative capacity in human corneal endothelium. Invest Ophthalmol Vis Sci 2009;50:2116-122.

20. Miyashita H, Higa K, Kato N, et al. Hypoxia enhances the expansion of human limbal epithelial progenitor cells in vitro. Invest Ophthalmol Vis Sci 2007;48:3586- 93.

21. Hansen JM, Klass M, Harris C, Csete M. A reducing redox environment promotes C2C12 myogenesis: Implications for regeneration in aged muscle. Cell Biol Int 2007;31:546-53.

22. Lees SJ, Childs TE, Booth FW. p21(Cip1) expression is increased in ambient oxygen, compared to estimated physiological (5%) levels in rat muscle precursor cell culture. Cell Prolif 2008;41:193-207.

23. Peh GS. Toh KP. Wu FY. Tan DT. Mehta JS. Cultivation of human cornealendothelial cells isolated from paired donor corneas. PLoS One 2011;6:e28310.

24. Jackel T, Knels L, Valtink M, Funk RH, Engelmann K. Serum-free corneal organ culture medium (SFM) but not conventional minimal essential organ culture medium (MEM) protects human corneal endothelial cells from apoptotic and necrotic cell death. Br J Ophthalmol 2011;95:123-30.

25. Zhu YT, Li F, Han B, Tighe S, Zhang S, Chen SY, et al. Activation of RhoA-ROCK-BMP signaling reprograms adult human corneal endothelial cells. J Cell Biol 2014;206:799-811.

26. Mimura T, Amano S, Usui T, et al. Transplantation of corneas reconstructed with cultured adult human corneal endothelial cells in nude rats. Exp Eye Res 2004;79:231-237.

27. Ishino Y, Sano Y, Nakamura T, et al. Amniotic membrane as a carrier for cultivated human corneal endothelial cell transplantation. Invest Ophthalmol Vis Sci 2004;45:800-6.

28. Mimura T, Yamagami S, Yokoo S, et al. Cultured human corneal endothelial cell transplantation with a collagen sheet in a rabbit model. Invest Ophthalmol Vis Sci 2004;45:2992-7.

29. Choi JS, Williams JK, Greven M, et al. Bioengineering endothelialized neo-corneas using donor-derived corneal endothelial cells and decellularized corneal stroma. Biomaterials 2010;31:6738-45.

30. Watanabe R, Hayashi R, Kimura Y, et al. A novel gelatin hydrogel carrier sheet for corneal endothelial transplantation. Tissue Eng Part A 2011;17:2213-19.

31. Liang Y, Liu W, Han B, et al. Fabrication and characters of a corneal endothelial cells scaffold based on chitosan. J Mater Sci Mater Med 2011;22:175-83.

32. Ju C, Zhang K, Wu X. Derivation of corneal endothelial cell-like cells from rat neural crest cells in vitro. PLoS One 2012;7:e42378.

33. Zhang K, Pang K, Wu X. Isolation and transplantation of corneal endothelial cell-like cells derived from invitro-differentiated human embryonic stem cells. Stem Cells Dev 2014;23:1340-54.

34. Joyce NC, Harris DL, Markov V, et al. Potential of human umbilical cord blood mesenchymal stem cells to heal damaged corneal endothelium. Mol Vis 2012;18:547-64.

35. Shao C, Chen J, Chen P, et al. Targeted transplantation of human umbilical cord blood endothelial progenitor cells with immunomagnetic nanoparticles to repair corneal endothelium defect. Stem Cells Dev 2015;24:756-67.

36. Mimura T, Yamagami S, Yokoo S, Araie M, Amano S. Comparison of rabbit corneal endothelial cell precursors in the central and peripheral cornea. Invest Ophthalmol Vis Sci 2005;46:3645-8.

37. Yamagami S, Yokoo S, Mimura T, Takato T, Araie M, Ama no S. Distribution of precursors in human corneal stromal cells and endothelial cells. Ophthalmology 2007;114:433-9.

38. Mimura T, Yokoo S, Yamagami S. Tissue Engineering of Corneal Endothelium. J Funct Biomater 2012;3: 726-44.

39. Hatou S, Yoshida S, Higa K et al. Functional corneal endothelium derived from corneal stroma stem cells of neural crst origin by retinoic acid and Wnt/betacatenin signaling. Stem Cells Dev 2013;22:828-39.

40. Inagaki E, Hatou S, Higa K,et al. Skin-Derived Pre cur - sors as a Source of Progenitors for Corneal Endot - helial Regeneration. Stem Cells Transl Med 2017; 6:788-98.

Kaynak Göster