Sığır tüberkülozunda Malondialdehit ve Superoksit Dismutaz'ın immunohistokimyasal olarak değerlendirilmesi

Sığır tüberkülozunda Malondialdehit ve Superoksit Dismutaz'ın immunohistokimyasal olarak değerlendirilmesi

Sığır tüberkülozu ülkemiz gibi gelişmekte olan ülkelerde önemini koruyan kronik ve zoonoz bir hastalıktır. Çok eski yıllardan beri tanınan bir hastalık olmasına rağmen patogenezi tam olarak anlaşılamamış olan hastalıklardan birisidir. Bu sebeple klinik tanısı kolaylıkla yapılamamaktadır. Bu çalışmada, sığır tüberkülozunda lezyon bölgesinde malondialdehit (MDA) ve süperoksit dismutaz (SOD) aktivitelerinin araştırılması ve bunların hastalığın patogenezi ile ilişkileri incelenmiştir. Bu amaçla PPD pozitif olarak kesimi yapılan 25 sığırın lezyonlu iç organlarında SOD ve MDA aktiviteleri immunohistokimyasal olarak değerlendirilmiştir. Çalışmamızın sonucunda bu markırların aktivitelerinin tüberküloz lezyonunda özellikle yangısal hücrelerde ve ardından da parankimal hücrelerde arttığı saptanmış ve patogenezde rol oynadıkları kanısına varılmıştır.

___

  • 1. Francis J. Tuberculosis in Animals and Man: A study in Comparative Pathology. 13th ed. London: Cassel and Co.; 1958. p. 357.
  • 2. Steele JH, Ranney AF. Animal tuberculosis. Am Rev Tuberc. 1958;77:908-922.
  • 3. Özbey Ö, Kalender H, Muz A. Sığır Tüberkülozu’nun Epidemiyolojisi ve Teşhisi. FÜ Sağ Bil Derg. 2008;22:307-314.
  • 4. Feng Z, Hu W, Marnett LJ, Tang M. Malondialdehyde, a major endogenous lipid peroxidation product, sensitizes human cells to UV- adn BPDE-induced killing and mutagenesis through inhibition of nucleotide excision repair. Mutat Res. 2006;601:125-136.
  • 5. Gök M, Yapıcı İ, Uzun K,Erdem S, Ünlü A, Büyükbaş S. Aktif tüberküloz hastalarında total antioksidan kapasitesi ve malondialdehit (MDA) seviyeleri. TAD. 2006;4:22-24.
  • 6. Kaklıkkaya İ, Menteşe Ü, Koramaz İ, Altun G, Menteşe A, Çakıroğlu Y et al. Deneysel iskemi reperfüzyon modelinde, etil pirüvat uygulamasının sonuçları. Turkish J Thorac Cardiovasc Surg. 2010;18:310-314.
  • 7. Beauchamp C, Fridovich I. Superoxide Dismutase: Improved Assays and an Assay Applicable to Acrylamide Gels. Anal Biochem. 1971;44:276-287.
  • 8. McCord JM, Fridovich I. Superoxide dismutase: the first twenty years (1968-1988). Free Raid Biol Med. 1988;5:363-369.
  • 9. Lavelle F, McAdam ME, Fielden EM, Roberts PB. A pulse-radiolysis study of the catalytic mechanism of the iron-containing superoxide dismutase from Photobacterium leiognathi. Biochem J. 1977;161:3-11.
  • 10. Rodriguez-Campos S, Smith NH, Boniotti MB, Aranaz A. Overview and phylogeny of Mycobacterium tuberculosis complex organisms: Implications for diagnostics and legislation of bovine tuberculosis. Res Vet Sci. 2014; 97:5-19.
  • 11. Karlson AG, Lessel EF. Mycobacterium bovis nom. nov. Int J Syst Evol Microbiol. 1970; 20:273-282.
  • 12. Barry CE III, Lee RE, Mdluli K, Sampson AE, Schroeder BG, Slayden RA et al. Mycolic acids: structure, biosynthesis and physiological functions. Prog Lipid Res. 1998; 37:143-179.
  • 13. Gürel A. Tüberkülozis. http://www.vetder.org/tuberculozis.html. 2014. Erişim tarihi: 07.12.2014.
  • 14. . Puri RV, Reddy PV, Tyagi AK. Secreted Acid Phosphatase (SapM) of Mycobacterium tuberculosis Is Indispensable for Arresting Phagosomal Maturation and Growth of the Pathogen in Guinea Pig Tissues. Plos one. 2013; 8: 1-12.
  • 15. Jones TC, Hunt RD, King NW. Veterinary Pathology. 6th ed. Maryland: Lippincott Williams and Wilkins; 1997. p: 490-497.
  • 16. Morris RS, Pfeiffer DU, Jackson R. The epidemiology of Mycobacterium bovis infections. Vet Microbiol. 1994; 40: 153-177.
  • 17. Ortatatlı M, Çiftçi MK, Tuzcu M. Sığırlarda Tüberküloz ve Diğer Granülomatöz Pnömoniler Üzerine Patolojik İncelemeler. Vet Bil Derg. 1998; 14: 139-150.
  • 18. Sayın Z, Erganiş O. Sığır Tüberkülozunun Teşhisinde Kullanılan Metotlar. Kocatepe Vet Derg. 2010; 3: 77-82.
  • 19. Nielsen F, Mikkelsen BB, Nielsen JB, Andersen HR, Grandjean P. Plasma malondialdehyde as biomarker for oxidative stress: reference interval and effects of life-style factors. Clin Chem. 1997; 43: 1209-1214.
  • 20. Okutan H, Savas C, Delibas N. The antioxidant effect of melatonin in lung injury after aortic occlusion-reperfusion. Interact Cardiovasc Thorac Surg. 2004; 3: 519-522.
  • 21. Bartsch H. Keynote address: exocyclic adducts as new risk markers for DNA damage in man. IARC Sci Publ. 1999; 150: 1-16.
  • 22. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991; 11: 81-128.
  • 23. Kaçmaz A, Polat A, User Y, Tilki M, Özkan S, Şener G. Octreotide improves reperfusion-induced oxidative injury in acute abdominal hypertension in rats. J Gastrointest Surg. 2004; 8: 113-119.
  • 24. Suhail M, Suhail S, Gupta BK, Bharat V. Malondialdehyde and Antioxidant Enzymes in Maternal and Cord Blood, and their Correlation in Normotensive and Preeclamptic Women. J Clin Med Res. 2009; 1: 150-157.
  • 25. Fridovich I. Superoxide dismutases. Annu Rev Biochem. 1975; 44: 147-159.
  • 26. Mann T, Keilin D. Haemocuprein and Hepatocuprein, Copper-Protein Compounds of Blood and Liver in Mammals. Proc Roy Soc. 1938; 126: 303-315.
  • 27. Akkuş I (1995): Serbest radikaller ve fizyopatolojik etkileri. Konya: Mimoza yayınları; 1995. p. 38.
  • 28. Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol. 1997; 82: 291-295.
  • 29. Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J of Bot. 2012; 1–26.
  • 30. Özel GSK, Birdane YO (2014): Antioksidanlar. Kocatepe Vet J. 2014; 7: 41-52.
  • 31. Beaman, L. Beaman, BL. Monoclonal antibodies demonstrate that superoxide dismutase contributes to protection of Norcardia asteroides within intact host. Infect Immunol. 1990; 58: 3122–3128.
  • 32. Kımble EJ. Investigation of ıron superoxide dismutase dna from M. bovis bcg as a vaccine against mycobacterial infectıon in mice. Uni of Colorado Thesis. 2001.
  • 33. Lakari E. Expression of oxidant and antioxidant enzymes in human lung and interstitial lung diseases. Oulu Uni Press, 2002; 1-86.
  • 34. Ramos-Vara JA, Miller MA. When Tissue Antigens and Antibodies Get Along: Revisiting the Technical Aspects of Immunohistochemistry: The Red, Brown, and Blue Technique. Vet Pathol. 2014; 5: 42-87.
  • 35. Pollock JM, Rodgers JD, Welsh MD, McNair J. Pathogenesis of bovine tuberculosis: the role of experimental models of infection. Vet Microbiol. 2006; 112: 141,150.
  • 36. Bezos J, Casal C, Romero B, Schroeder B, Hardegger R, Raeber AJ et al. Current ante-mortem techniques for diagnosis of bovine tuberculosis. Res Vet Sci. 2014; 97: 544-552.
  • 37. Beytut E. Kars İli ve Yöresinde Sığırlarda Tüberküloz İnsidensi ve Lezyonların Lokalizasyonu Üzerine Patolojik İncelemeler. Kafkas Üniv Vet Fak Derg. 2001; 7: 15-25.
  • 38. Morris RS, Pfeiffer DU, Jackson R. The epidemiology of Mycobacterium bovis infections. Vet Microbiol. 1994; 40: 153-177.
  • 39. Palanisamy GS, Kirk NM, Ackart DF, Shanley CA, Orme IM, Basaraba RJ. Evidence for oxidative stress and defective antioxidant response in guinea pigs with tuberculosis. PLos One. 2011; 6: e26254.
  • 40. Kanth BK, Oh T, Sohng JK. Identification of two superoxide dismutases (FeSOD and NiSOD) from Streptomyces peucetius ATCC 27952. Biotech and Bioproc E. 2010;15: 785-792.