Hybrid-Model Simulations to Equilibrate Energy Demand and Daylight Autonomy as a Function of Window-to-Wall Ratio and Orientation For a Perimeter Office in Izmir

This study is based on integrated thermal-lighting simulations to find the optimal value of the window-to-wall ratio (WWR) for a perimeter, single-zone office to equilibrate daylight autonomy and overall energy demand in the climate of Izmir, Turkey. A hybrid model approach has been adopted that combines thermal and lighting calculations in a single model via the IES software. The optimal WWRs to achieve the highest possible daylight benefit and lowest overall energy use at the same time has been found to have 30% WWR in the South and West, 40% WWR in the East and 60% WWR in the North. These WWR values trade-off daylight benefit, total energy consumption for lighting, heating, and cooling, and visual comfort compared to larger and smaller WWR options. Since the daylight use can significantly reduce artificial lighting energy consumption as long as WWR increases, the energy benefit from lighting reaches 79% as a function of daylight for the South case at 30% optimal WWR. The strongest effect of cooling demand is evident in the breakdown of energy consumption and the amount of glazing is the dominant factor defining the cooling demand. The implications of this study can help architects get feedback on how to save energy for each final energy use (heating, cooling, and lighting) reduction in window space and convey this message to their designs with suggested optimal WWR values

İzmir’de Tek Hacimli Bir Ofisin Enerji Yükü ve Gün Işığı Otonomisini Dengelemek İçin Pencere-Duvar Oranı ve Yönelimine Bağlı Olarak Gerçekleştirilen Hibrit-Model Simülasyonları

Bu çalışma, İzmir iline ait iklim koşulları bağlamında tek hacimli bir ofisin gün ışığı otonomisini ve toplam enerji yükünü dengelemek için optimum pencere-duvar oranını (PDO) bulmak için yapılan entegre termal-aydınlatma simülasyonlarına dayanmaktadır. IES yazılımıyla termal ve aydınlatma hesaplarını bir modelde birleştiren “hibrit model” yaklaşımı benimsenmiştir. Olası en yüksek gün ışığı faydası ve en düşük toplam enerji tüketimini sağlamak için en uygun pencere-duvar oranı değerleri sırasıyla güney ve batıda %30, doğuda %40 ve kuzeyde %60 olarak bulunmuştur. Bulunan pencere-duvar oranı değerleri gün ışığından yararlanmayı ve görsel konforu sağlarken, aydınlatma, ısıtma ve soğutma için genel enerji tüketimini daha büyük ve daha küçük pencere-duvar oranı alternatiflerine göre daha iyi dengelemektedir. Pencere-duvar oranı arttığında artan gün ışığı miktarı, yapay aydınlatma enerji tüketimini önemli ölçüde azaltmakta ve aydınlatma enerjisi kazancı, güney cephede optimum %30 pencere-duvar oranı için %79’a kadar ulaşmaktadır. Enerji tüketimi analizinde soğutma talebinin güçlü etkisi açıkça görülmektedir ve pencere alanı soğutma talebini belirleyen en önemli etkendir. Bu çalışmada ortaya çıkan sonuçlar, pencere alanındaki azalmanın her bir enerji kullanımında (ısıtma, soğutma ve aydınlatma) ne kadar enerji tasarrufu sağladığına dair mimarların geri bildirim almalarına ve önerilen optimum pencere-duvar oranı değerlerinin tasarıma aktarılmasına yardım etmektedir.

___

Acosta, I., Campano, M. Á., & Molina, J. F. (2016). Window design in architecture: Analysis of energy savings for lighting and visual comfort in residential spaces. Applied Energy, 168, 493- 506. https://doi.org/10.1016/j.apenergy.2016.02.005

American Society of Heating, Refrigerating, & Air-Conditioning Engineers. (2001). Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs (Standard No:140). American Society of Heating, Refrigerating and Air-Conditioning Engineers, Incorporated. http://www.eeperformance.org/uploads/8/6/5/0/8650231/ashrae_140.pdf

American Society of Heating, Refrigerating, & Air-Conditioning Engineers. (2004). Advanced Energy Design Guide for Small Office Buildings. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Incorporated. https:// www.ashrae.org/technical-resources/aedgs/50- percent-aedg-free-download

American Society of Heating, Refrigerating, & Air-Conditioning Engineers. (2001). Energy Standard for Buildings Except Low-Rise Residential Buildings (Standard No: 90.1). American Society of Heating, Refrigerating and Air- Conditioning Engineers, Incorporated.

APpro, the Profiles Database of the Apache module in IES , can modulate lighting gain with a time series value in the of 0-1 range. The modular lighting dimming profile is applied in simulations using a “ramp function” to produce the following formula: ramp (e1,0,1,500,0). The formula is suitable for controlling the lighting gain as a function of daylight illumination on the workplane. The value of the profile falls from “1” (at this value there is no daylight on the workplane and the required 500 lx illumination level is provided by artificial light) to “0” (daylight illuminance more than 500 lx) (Apache Profiles Database, 2014). Since it is integrated into the electrical light dimming system, it is critical to calculate he hourly changing lamp heat dissipation in heating and cooling load. This was achieved through the integration of the Apache thermal simulation module of IES and RadianceIES CBDM technology.

Apache Profiles Database. (2014). APpro User Guide. IES Virtual Environment. https://www.iesve.com/downloads/help/ Thermal/5.9_APPro.pdf

Attia, S., Beltrán, L., De Herde, A., & Hensen, J. (2009). “Architect friendly”: A comparison often different building performance simulation tools. Proceedings of the IBPSA 2009–International Building Performance Simulation Association Conference and Exhibition, Glasgow, UK, 204–211. https://orbi.uliege. be/bitstream/2268/167578/1/BS09_0204_211.pdf

Bayram, G. (2015). A Proposal For A Retrofitting Model For Educational Buildings In Terms of Energy Efficient Lighting Criteria. [Unpublished doctoral dissertation]. İzmir Institute of Technology.

Berardi, U., & Anaraki, H. K. (2018). The benefits of light shelves over the daylight illuminance in office buildings in Toronto. Indoor and Built Environment, 27(2), 244-262. https://doi. org/10.1177/1420326X16673413

Bostancioglu, E., & Telatar, B. (2013). Effect of window size on residential buildings’ energy costs. World Applied Sciences Journal J, 21(4), 631-640. https://doi.org/10.5829/idosi. wasj.2013.21.4.860

Boyce, P. R., & Smet, K. A. G. (2014). LRT symposium ‘Better metrics for better lighting’–a summary. Lighting Research & Technology, 46(6), 619-636. https://doi. org/10.1177/1477153514558161

Chen, X., & Yang, H. (2015). Combined thermal and daylight analysis of a typical public rental housing development to fulfil green building guidance in Hong Kong. Energy and Buildings, 108, 420-432. https://doi.org/10.1016/j.enbuild.2015.09.032

CIBSE Lighting Guide 10. (1999). Daylighting and window design. The Chartered Institution of Building Services Engineers. https://nowalcott.files.wordpress.com/2010/03/daylighting-and-window-design.pdf

Clarke, J. A., Janak, M., & Ruyssevelt, P. (1998). Assessing the overall performance of advanced glazing systems. Solar Energy, 63(4), 231-241. https://doi.org/10.1016/S0038- 092X(98)00034-6

Crawley, D. B., Hand, J. W., Kummert, M., & Griffith, B. T. (2005). Contrasting the capabilities of building energy performance simulation programs, Proceeding of ninth international IBPSA conference, Montreal, Canada, 15-18. http://www.ibpsa. org/proceedings/BS2005/BS05_0231_238.pdf

Fasi, M. A., & Budaiwi, I. M. (2015). Energy performance of windows in office buildings considering daylight integration and visual comfort in hot climates. Energy and Buildings, 108, 307-316. https://doi.org/10.1016/j.enbuild.2015.09.024

Freewan, A. A. (2015). Developing daylight devices matrix with special integration with building design process. Sustainable Cities and Society, 15, 144-152. https:// doi.org/10.1016/j. scs.2014.11.003

Goia, F. (2016). Search for the optimal window-to-wall ratio in office buildings in different European climates and the implications on total energy saving potential. Solar Energy, 132, 467-492. https://doi.org/10.1016/j.solener.2016.03.031

Halonen, L., Tetri, E. & Bhusal, P. (2010). Guidebook on energy efficient electric lighting for buildings. Aalto University, School of Science and Technology, Department of Electronics Lighting Unit. http://www.ecbcs.org/Data/publications/EBC_Annex_45_Guidebook.pdf

Heschong, L. (2002). Daylighting and human performance. ASHRAE journal, 44(6), 65-67. http://www.livingdaylights. nl/wp-content/uploads/2016/12/Heschong-2002.-Daylighting-and-Human-performance.pdf

IESNA Lighting Handbook. (2000). The Standard Lighting Guide. Illuminating Engineering Society of North America.

Inanici, M. N., & Demirbilek, F. N. (2000). Thermal performance optimization of building aspect ratio and south window size in five cities having different climatic characteristics of Turkey. Building and Environment, 35(1), 41-52. https://doi. org/10.1016/S0360-1323(99)00002-5

International Energy Agency. (2006). Light’s Labour’s Lost, IEA Publications. https://www.osti.gov/etdeweb/servlets/ purl/20836234

Jakubiec, J. A., & Reinhart, C. F. (2011). DIVA 2.0: Integrating daylight and thermal simulations using Rhinoceros 3D, Daysim and EnergyPlus. Proceedings of building simulation, Sydney, 20(11), 2202-2209. http://ibpsa.org/proceedings/ BS2011/P_1701.pdf

Kazanasmaz, T., Grobe, L. O., Bauer, C., Krehel, M., & Wittkopf, S. (2016). Three approaches to optimize optical properties and size of a South-facing window for spatial Daylight Autonomy. Building and Environment, 102, 243-256. https://doi. org/10.1016/j.buildenv.2016.03.018

Leonidaki, K., Kyriaki, E., Konstantinidou, C., Giama, E., & Papadopoulos, A. M. (2014). Thermal performance of office building envelopes: the role of window-to-wall ratio and thermal massin Mediterranean and Oceanic climates. Journal of Power Technologies, 94(2), 128-134. http://papers.itc.pw.edu.pl/ index.php/JPT/article/view/550

Li, D. H., Wong, S. L., Tsang, C. L., & Cheung, G. H. (2006). A study of the daylighting performance and energy use in heavily obstructed residential buildings via computer simulation techniques. Energy and Buildings, 38(11), 1343-1348. https://doi. org/10.1016/j.enbuild.2006.04.001

LM, I. (2013). Approved method: IES spatial Daylight autonomy (sDA) and annual sunlight exposure (ASE). Illuminating Engineering Society. https://www.ies.org/product/ies-spatial-daylight-autonomy-sda-and-annual-sunlight-exposure-ase/

Mangkuto, R. A., Rohmah, M., & Asri, A. D. (2016). Design optimisation for window size, orientation, and wall reflectance with regard to various daylight metrics and lighting energy demand: A case study of buildings in the tropics. Applied Energy, 164, 211-219. https://doi.org/10.1016/j.apenergy.2015.11.046 Melendo, J. M. A., & Roche, P. (2009). Effects of window size in daylighting and energy performance in buildings. Proceedings of the PLEA, 26th Conference on Passive and Low Energy Architecture, Quebec City, Canada.

Meresi, A. (2016). Evaluating daylight performance of light shelves combined with external blinds in south-facing classrooms in Athens, Greece. Energy and Buildings, 116, 190- 205. https://doi.org/10.1016/j.enbuild.2016.01.009

Nabil, A., & Mardaljevic, J. (2005). Useful daylight illuminance: a new paradigm for assessing daylight in buildings. Lighting Research & Technology, 37(1), 41-57. https://doi. org/10.1191/1365782805li128oa

Nabil, A., & Mardaljevic, J. (2006). Useful daylight illuminances: A replacement for daylight factors. Energy and Buildings, 38(7), 905-913. https://doi:10.1016/j.enbuild.2006.03.013

Nasrollahi, F. (2010). Window area in office buildings from the viewpoint of energy efficiency. Proceedings of the Third German-Austrian IBPSA Conference Vienna University of Technology. http://info.tuwien.ac.at/bausim/conftool/nasrollahi-2010-window_area_in_office_buildings_from_the_ viewpoint-180.pdf

Ochoa, C. E., Aries, M. B., Van Loenen, E. J.,&Hensen, J. L. (2012). Considerations on design optimization criteria for windows providing low energy consumption and high visual comfort. Applied Energy, 95, 238-245. https://doi.org/10.1016/j.apenergy.2012.02.042

Öner Ö. C. (2020). Comparison of Architectural Design Parameters In Traditional Buildings In Terms Of Energy Performance For Future Housing Design. [Unpublished doctoral dissertation]. İzmir Institute of Technology.

Özkan, D. B., & Onan, C. (2011). Optimization of insulation thickness for different glazing areas in buildings for various climatic regions in Turkey. Applied Energy, 88(4), 1331-1342. https://doi.org/10.1016/j.apenergy.2010.10.025

Poirazis, H., & Blomsterberg, Å. (2005). Energy and thermal analysis of glazed office buildings using a dynamic energy simulation tool. Proceeding of ninth international IBPSA conference, Montreal, Canada, 945-952. http://www.ibpsa.org/ proceedings/BS2005/BS05_0945_952.pdf

RadianceIES:Glossary. (2014). IES Virtual Environment. https:// docplayer.net/61802765-Radianceies-glossary.html

Reinhart, C. F. (2002). Effects of interior design on the daylight availability in open plan offices. Proceedings of the 2002 American Council for an Energy Efficient Economy (ACEEE) Summer Study on Energy Efficiency in Buildings, 3, 309-322.

Reinhart, C. F. (2014). Daylighting handbook: fundamentals, designing with the sun. Christoph Reinhart. https://architecture.mit.edu/publication/daylighting-handbook-i

Standard DIN. (1994). Daylight in interiors- Simplified regulation for minimum window sizes. (Standard No.5034-4). German Institute for Standardisation.

The Building Regulations. (2010). Approved Document F1A: Means of Ventilation. National Building Services.

TSE 825. (2008) Thermal Insulation Requirements for Buildings. Turkish Standard Institution. Turkish State Meteorological Service. Climate Data. Turkey. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceleristatistik.aspx?m=IZMIR

Tzempelikos, A., & Athienitis, A. K. (2005). Integrated Thermal and Daylighting Analysis for Design of Office Buildings. (Standard No: 111-1). American Society of Heating, Refrigerating and Air-Conditioning Engineers, Incorporated.

Tzempelikos, A., & Athienitis, A. K. (2006, September). Shading as an active component for solar control: an integrated approach at the early design stage. Proceedings of the PLEA, 26th Conference on Passive and Low Energy Architecture, Quebec City, Canada.

Tzempelikos, A., & Athienitis, A. K. (2007). The impact of shading design and control on building cooling and lighting demand. Solar Energy, 81(3), 369-382. https://doi.org/10.1016/j.solener.2006.06.015

Ünlü, N. P. B. (2018). An Investigation Into Fenestration Strategies on Building Performance: Case of Residential BuildingsIn Turkey. [Unpublished master’s thesis]. Yaşar University.

Van DIJK, D., & Platzer, W. J. (2003). Reference office for thermal, solar and lighting calculations. (Report No. swift-wp3-tnodvd-030416). International Energy Agency (IEA) Task 27. Van Tichelen, P., Geerken, T., Jansen, B., Bosch, M. V., Van Hoof,

V., Vanhooydonck, L., & Vercalsteren, A. (2007). Preparatory studies for eco-design requirements of EuPs. Final Report: Lot, 9: Public street lighting. VITO.

Yildiz, Y., Özbalta, T. G., & Arsan, Z. D. (2011). Impact of Windowto-Wall Surface Area for Different Window Glass Types and Wall Orientations on Building Energy Performance: A Case Study for a School Building Located in Izmir, Turkey//Farklı Cam Türleri ve Yönlere Göre Pencere/Duvar Alanı Oranının Bina Enerji Performansına Etkisi: Eğitim Binası, İzmir. Megaron, 6(1), 30.

Yılmaz, Y., & Yılmaz, B. Ç. (2020). A weighted multi-objective optimisation approach to improve based facade aperture sizes in terms of energy, thermal comfort and daylight usage. Journal of Building Physics, 1744259120930047. https://doi. org/10.1177/1744259120930047
Megaron-Cover
  • ISSN: 1305-5798
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2006
  • Yayıncı: Kare Yayıncılık