The Role of Microbiota in the Development and Progression of Chronic Kidney Disease

Researchers related to micobiota have claimed that intestinal microbiome exerts an effect on development of disease in many organ systems. Fat tissue, kidneys, heart and vasculature, intestines and even brain tissue are affected by dysbiosis of gut flora. With the increasing number, and quality of the studies, the topics investigated have demonstrated variations from being focused solely on microbiome itself to metabolites of this flora penetrating into serum and immune response of the body to these metabolites. Metabolites released by intestinal flora trigger chronic inflammation in the body and lead to the development of metabolic syndrome, chronic renal disease or cardiovascular diseases. With such a vast gamut of diseases and pathologic conditions related to intestinal microbiome, it should come as no surprise that there have been attempts at treatment of dysbiosis with methods including flora transfer from healthy individuals. This review will focus on these disease states and how they are affected by dysbiosis of flora. The roles played by specific metabolites that increase during intestinal dysbiosis such as indoxyl sulfate, p-cresyl sulfate or trimethylamine N-oxide in chronic kidney disease and atherosclerosis will be discussed. Besides, increase in the permeability of intestinal barriers due to the evolvement of uremia as a result of chronic renal disease, ensuing development of dysbiosis, and the effects of these diseases on dysbiosis will be also dealt with.

Kronik Böbrek Hastalığının Gelişmesinde ve İlerlemesinde Mikrobiyotanın Rolü

Mikrobiyota hakkındaki araştırmalar birçok sistemdeki hastalık gelişiminde bağırsak mikrobiyomunun etkisi olduğunu iddia ediyor. Bunlardan birkaçı; yağ doku, kalp, dolaşım sistemi, sindirim sistemi ve hatta santral sinir sistemidir. Bu konudaki araştırmaların sayısının ve kalitesinin artmasıyla birlikte üzerinde araştırılan konular; bağırsak mikrobiyomunun saf oluşumundan, bu floranın kana geçiş yapan metabolitleri ve vucüdun buna verdiği tepkiye kadar çeşitlilik göstermeye başladı. Bağırsak florasının salgıladığı metabolitler, vücutta kronik enflamasyonu tetikleyerek metabolik sendrom, kronik böbrek hastalığı ya da kardiyovasküler hastalıklar gibi hastalıklara yol açabilmektedir. Bunlar gibi geniş kapsamlı ve multi-sistemik hastalıkların bağırsak mikrobiyomuyla bağlantıları kurulması üzerine, bağırsak mikrobiyomunun bozulmasının flora aktarımı gibi yöntemlerle tedavi edilmeye çalışılması şaşırtıcı olmayan bir gelişme olmuştur. Bu makale, bazı hastalıkların flora disbiyozundan nasıl etkilendikleri üzerine yoğunlaşacaktır. Indoxil sülfat, p-krezil sülfat ya da trimetilamin N-oksit gibi bağırsak disbiyozu sırasında artan metabolitlerin kronik böbrek hastalığı ve ateroskleroz gibi hastalıklarda ne gibi roller oynadığı tartışılacaktır. Bağırsak bariyerlerinin permeabilitesinin kronik böbrek hastalığı sonucunda gelişen üremi nedeniyle artması ve bunun sonucunda gelişen disbiyoz gibi bu hastalıkların da disbiyoz üzerindeki etkilerine de değinilecektir.

Kaynakça

1. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837-48. [CrossRef]

2. Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915-20. [CrossRef]

3. Genton L, Cani PD, Schrenzel J. Alterations of gut barrier and gut microbiota in food restriction, food deprivation and protein-energy wasting. Clin Nutr. 2015;34:341-9. [CrossRef]

4. Videhult FK, West CE. Nutrition, gut microbiota and child health outcomes. Curr Opin Clin Nutr Metab Care. 2016;19:208-13. [CrossRef]

5. Ussar S, Griffin NW, Bezy O, et al. Interactions between Gut Microbiota, Host Genetics and Diet Modulate the Predisposition to Obesity and Metabolic Syndrome. Cell Metab. 2015;22:516-30. [CrossRef]

6. O’toole PW, Jeffery IB. Gut microbiota and aging. Science. 2015;350:1214-5. [CrossRef]

7. Biagi E, Nylund L, Candela M, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE. 2010;5:e10667. [CrossRef]

8. Rodríguez JM, Murphy K, Stanton C, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015;26:26050. [CrossRef]

9. Boulangé CL, Neves AL, Chilloux J, Nicholson JK, Dumas ME. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016;8:42. [CrossRef]

10. Caesar R, Tremaroli V, Kovatcheva-datchary P, Cani PD, Bäckhed F. Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling. Cell Metab. 2015;22:658-68. [CrossRef]

11. Gregory JC, Buffa JA, Org E, et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem. 2015;290:5647-60. [CrossRef]

12. Ramezani A, Massy ZA, Meijers B, Evenepoel P, Vanholder R, Raj DS. Role of the Gut Microbiome in Uremia: A Potential Therapeutic Target. Am J Kidney Dis. 2016;67:483-98. [CrossRef]

13. Wing MR, Patel SS, Ramezani A, Raj DS. Gut microbiome in chronic kidney disease. Exp Physiol. 2016;101:471-7. [CrossRef]

14. Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57-63. [CrossRef]

15. Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol. 2014;25:657-70. [CrossRef]

16. Magnusson M, Magnusson KE, Sundqvist T, Denneberg T. Increased intestinal permeability to differently sized polyethylene glycols in uremic rats: effects of low- and high-protein diets. Nephron. 1990;56:306-11. [CrossRef]

17. Magnusson M, Magnusson KE, Sundqvist T, Denneberg T. Impaired intestinal barrier function measured by differently sized polyethylene glycols in patients with chronic renal failure. Gut. 1991;32:754-9. [CrossRef]

18. Mcintyre CW, Harrison LE, Eldehni MT, et al. Circulating endotoxemia: a novel factor in systemic inflammation and cardiovascular disease in chronic kidney disease. Clin J Am Soc Nephrol. 2011;6:133-41. [CrossRef]

19. Wiedermann CJ, Kiechl S, Dunzendorfer S, et al. Association of endotoxemia with carotid atherosclerosis and cardiovascular disease: prospective results from the Bruneck Study. J Am Coll Cardiol. 1999;34:1975-81. [CrossRef]

20. Goto T, Edén S, Nordenstam G, Sundh V, Svanborg-edén C, Mattsby-baltzer I. Endotoxin levels in sera of elderly individuals. Clin Diagn Lab Immunol. 1994;1:684-8.

21. Sekirov I, Russell SL, Antunes LC, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90:859-904. [CrossRef]

22. O’mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015;277:32-48. [CrossRef]

23. Noel S, Martina-lingua MN, Bandapalle S, et al. Intestinal microbiota-kidney cross talk in acute kidney injury and chronic kidney disease. Nephron Clin Pract. 2014;127:139-43. [CrossRef]

24. Pluznick JL, Protzko RJ, Gevorgyan H, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA. 2013;110:4410-5. [CrossRef]

25. Jose PA, Raj D. Gut microbiota in hypertension. Curr Opin Nephrol Hypertens. 2015;24:403-9. [CrossRef]

26. Diaz heijtz R. Fetal, neonatal, and infant microbiome: Perturbations and subsequent effects on brain development and behavior. Semin Fetal Neonatal Med. 2016;21:410-7. [CrossRef]

27. Watts SW, Morrison SF, Davis RP, Barman SM. Serotonin and blood pressure regulation. Pharmacol Rev. 2012;64:359-88. [CrossRef]

28. Ayme-Dietrich E, Marzak H, Lawson R, et al. Contribution of serotonin to cardiac remodeling associated with hypertensive diastolic ventricular dysfunction in rats. J Hypertens. 2015;33:2310-21. [CrossRef]

29. Harris K, Kassis A, Major G, Chou CJ. Is the gut microbiota a new factor contributing to obesity and its metabolic disorders?. J Obes. 2012;2012:879151. [CrossRef]

30. Tilg H, Kaser A. Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest. 2011;121:2126-32. [CrossRef]

31. Xu T, Sheng Z, Yao L. Obesity-related glomerulopathy: pathogenesis, pathologic, clinical characteristics and treatment. Front Med. 2017;11:340-8. [CrossRef]

32. Yoshifuji A, Wakino S, Irie J, et al. Gut Lactobacillus protects against the progression of renal damage by modulating the gut environment in rats. Nephrol Dial Transplant. 2016;31:401-12. [CrossRef]

33. Poesen R, Ramezani A, Claes K, et al. Associations of Soluble CD14 and Endotoxin with Mortality, Cardiovascular Disease, and Progression of Kidney Disease among Patients with CKD. Clin J Am Soc Nephrol. 2015;10:1525-33. [CrossRef]

34. Luche E, Cousin B, Garidou L, et al. Metabolic endotoxemia directly increases the proliferation of adipocyte precursors at the onset of metabolic diseases through a CD14-dependent mechanism. Mol Metab. 2013;2:281-91. [CrossRef]

35. Anders HJ, Andersen K, Stecher B. The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int. 2013;83:1010-6. [CrossRef]

36. Lau WL, Kalantar-zadeh K, Vaziri ND. The Gut as a Source of Inflammation in Chronic Kidney Disease. Nephron. 2015;130:92-8. [CrossRef]

37. Vaziri ND, Dure-smith B, Miller R, Mirahmadi MK. Pathology of gastrointestinal tract in chronic hemodialysis patients: an autopsy study of 78 cases. Am J Gastroenterol. 1985;80:608-11.

38. Vaziri ND, Yuan J, Rahimi A, Ni Z, Said H, Subramanian VS. Disintegration of colonic epithelial tight junction in uremia: a likely cause of CKD-associated inflammation. Nephrol Dial Transplant. 2012;27:2686-93. [CrossRef]

39. Tarantino G. Gut microbiome, obesity-related comorbidities, and low-grade chronic inflammation. J Clin Endocrinol Metab. 2014;99:2343-6. [CrossRef]

40. Stoll LL, Denning GM, Weintraub NL. Potential role of endotoxin as a proinflammatory mediator of atherosclerosis. Arterioscler Thromb Vasc Biol. 2004;24:2227-36. [CrossRef]

41. Viola J, Soehnlein O. Atherosclerosis - A matter of unresolved inflammation. Semin Immunol. 2015;27:184-93. [CrossRef]

42. Oyama J, Blais C, Liu X, et al. Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation. 2004;109:784-9. [CrossRef]

43. Pamukcu B, Lip GY, Shantsila E. The nuclear factor--kappa B pathway in atherosclerosis: a potential therapeutic target for atherothrombotic vascular disease. Thromb Res. 2011;128:117-23. [CrossRef]

44. Yu XH, Zheng XL, Tang CK. Nuclear Factor-κB Activation as a Pathological Mechanism of Lipid Metabolism and Atherosclerosis. Adv Clin Chem. 2015;70:1-30. [CrossRef]

45. Ortiz S, Zapater P, Estrada JL, et al. Bacterial DNA translocation holds increased insulin resistance and systemic inflammatory levels in morbid obese patients. J Clin Endocrinol Metab. 2014;99:2575-83. [CrossRef]

46. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027-31. [CrossRef]

47. Jumpertz R, Le DS, Turnbaugh PJ, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr. 2011;94:58-65. [CrossRef]

48. Koleva PT, Bridgman SL, Kozyrskyj AL. The infant gut microbiome: evidence for obesity risk and dietary intervention. Nutrients. 2015;7:2237-60. [CrossRef]

49. Cani PD, Neyrinck AM, Fava F, et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia. 2007;50:2374-83. [CrossRef]

50. Vrieze A, Van nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143:913-6.e7. [CrossRef]

51. He C, Shan Y, Song W. Targeting gut microbiota as a possible therapy for diabetes. Nutr Res. 2015;35:361-7. [CrossRef]

52. Van olden C, Groen AK, Nieuwdorp M. Role of Intestinal Microbiome in Lipid and Glucose Metabolism in Diabetes Mellitus. Clin Ther. 2015;37:1172-7. [CrossRef]

53. Devaraj S, Hemarajata P, Versalovic J. The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin Chem. 2013;59:617-28. [CrossRef]

54. Perry RJ, Peng L, Barry NA, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature. 2016;534:213-7. [CrossRef]

55. Wang X, Xu X, Xia Y. Further analysis reveals new gut microbiome markers of type 2 diabetes mellitus. Antonie Van Leeuwenhoek. 2017;110:445-53. [CrossRef]

56. Vrieze A, Van nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143:913-6.e7. [CrossRef]

57. Giongo A, Gano KA, Crabb DB, et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 2011;5:82-91. [CrossRef]

58. Taplin CE, Barker JM. Autoantibodies in type 1 diabetes. Autoimmunity. 2008;41:11-8. [CrossRef]

59. De goffau MC, Luopajärvi K, Knip M, et al. Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes. 2013;62:1238-44. [CrossRef]

60. Alkanani AK, Hara N, Gottlieb PA, et al. Alterations in Intestinal Microbiota Correlate With Susceptibility to Type 1 Diabetes. Diabetes. 2015;64:3510-20. [CrossRef]

Kaynak Göster

Medeniyet Medical Journal
  • ISSN: 2149-2042
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2015

3.5b1.9b

Sayıdaki Diğer Makaleler

Clinical Comparison of Percutaneous and Open Hamstring Lengthening in Children with Spastic Cerebral Palsy

Yalçın TURHAN, Mehmet ARICAN

Frequency of Anxiety Among Physicians Working in Emergency Departments and Other Clinics in Turkey: A Cross-Sectional Survey

Mehmet KOCAK, Osman Avsar GUL, Hakan AYDIN, KURTULUŞ AÇIKSARI, Dogac Niyazi OZUCELIK

Temporal and Frequency Characteristics of Turkish Vowels in Laryngectomized Speakers: Preliminary Study

Fatma ESEN AYDINLI, MAVİŞ EMEL KULAK KAYIKCI, Nilda SÜSLÜ

Synchronous Tumors: Renal Cell Carcinoma with Adenocarcinoma of the Ampulla of Vater; Case Report

Yavuz Onur DANACIOĞLU, Ferhat KESER, Pınar ERGIN ZERK, Bengü ŞİMŞEK, Turgay TURAN

Changes in Als2 Expression Leads to Different Outcomes on the Expression of Two NF-kB Targeted Genes in N2a and C2C12 Cell Lines

Mehmet OZANSOY, M. Beyza ÇETİN OZANSOY

Nasal Chondromesenchymal Hamartoma Masquerading As Malignant Paediatric Tumour

Sui Teng TAN, Saraiza Binti ABU BAKAR, Abdul Fattah ABDULWAHAB, Khadijah Mohd NOR

Asymptomatic Multiple Laryngeal Cysts in Multinodular Goitre Patient

Mohd Shaiful Nizam Mamat NASIR, Muhammad Nasri ABU BAKAR, Irfan MOHAMAD

The Hearing Loss That Pulsates

Nadhirah Mohd SHAKRI, Asma Binti ABDULLAH, Noor Dina HASHIM, Rozman ZAKARIA, Zakhirati Zainol ABIDIN, Suria Hayati Md PAUZI, Noor ain Mohd NASIR

Our Early Results of Isolated Coronary Artery Bypass Grafting: A Case Series of the First 100 Patients in a Newly Established Heart Center

Ebuzer AYDIN, Mehmet Şenel BADEMCİ, Cemal KOCAASLAN, Emine Şeyma DENLİ YALVAÇ, Ahmet ÖZTEKİN, Mustafa ALDAĞ, Senem KORUK

The Role of Microbiota in the Development and Progression of Chronic Kidney Disease

Serhan UNLU, Dilek Ozgenaz SAHAN, Tuncay DAGEL, Mehmet KANBAY