S-Generalized Mittag-Leffler Function and its Certain Properties

S-Generalized Mittag-Leffler Function and its Certain Properties

In 2014, a new generalized beta function which consist of seven parameters, defined and studied bySrivastava et al. [H. M. Srivastava, P. Agarwal and S. Jain, Generating functions for the generalized Gausshypergeometric functions, Appl. Math. Comput., 247 (2014), pp. 348-352]. In 2015, Srivastava et al. [H.M. Srivastava, R. Jain and M. K. Bansal, A study of the S-generalized Gauss hypergeometric functionand its associated integral transforms, Turkish J. Anal. Number Theory, 3 (2015), pp. 101-104] called thisgeneralization as ”S-generalized beta function“ and use it to define S-generalized Gauss hypergeometricfunction. In this paper, by using S-generalized beta function, we introduce a new generalization ofMittag-Leffler function. This new generalization of Mittag-Leffler function is consist of eleven parameters.We also investigate some of its certain properties such as integral representations, recurrence formulasand derivative formulas by using classical and fractional derivatives. Furthermore, we determine itsMellin, beta and Laplace integral transforms.

___

  • [1] Agarwal R. P. and Agarwal P., Extended Caputo fractional derivative operator, Adv. Stud. Contemp. Math. 25:3 (2015), 301-316.
  • [2] Agarwal P., Chand M. and Jain S., Certain integrals involving generalized Mittag-Leffler functions, Proc. Nat. Acad. Sci. India Sect. A 85:3 (2015), 359-371.
  • [3] Agarwal P., Choi J., Jain S. and Rashidi M. M., Certain integrals associated with generalized Mittag-Leffler function, Commun. Korean Math. Soc. 32:1 (2017), 29-38.
  • [4] Agarwal P., Choi J. and Paris R. B., Extended Riemann-Liouville fractional derivative operator and its applications, J. Nonlin. Sci. Appl. 8:5, (2015), 451-466.
  • [5] Agarwal P. and Nieto J. J., Some fractional integral formulas for the Mittag-Leffler type function with four parameters, Open Math. 13:1 (2015), 537-546.
  • [6] Agarwal P., Rogosin S. V. and Trujillo J. J., Certain fractional integral operators and the generalized multi-index Mittag-Leffler functions, Proc. Indian Acad. Sci. Math. Sci. 125:3 (2015), 291-306.
  • [7] Butzer P.L. and Jansche S., A direct approach to the Mellin transform, J. Fourier Anal. 3 (1997), 325-376.
  • [8] Camargo R. F., Capelas de Oliveira E. and Vas J., On the generalized Mittag-Leffler function and its application in a fractional telegraph equation, Math. Phys. Anal. Geom. 15:1 (2012), 1-16.
  • [9] Kurulay M. and Bayram M., Some properties of the Mittag-Leffler functions and their relation with the Wright function, Adv. Differ. Equ. 2012:181 (2012), https://doi.org/10.1186/1687-1847-2012-181.
  • [10] Chaudhry M. A., Qadir A., Rafique M. and Zubair S. M., Extension of Euler’s beta function, J. Comput. Appl. Math. 78 (1997), 19-32.
  • [11] Chaudhry M. A., Qadir A., Srivastava H. M. and Paris R. B., Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput. 159 (2004), 589-602.
  • [12] Gorenflo R., Kilbas A., Mainardi F. and Rogosin S., Mittag-Leffler functions: Related topics and applications, Springer, Berlin, 2010.
  • [13] Hilfer R., Fractional time evolution, in: R. Hilfer (Ed.), Applications of Fractional Calculus in Physics, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 2000.
  • [14] Hilfer R. and Seybold H., Computation of the generalized Mittag-Leffler function and its inverse in the complex plane, Integral Transform. Spec. Funct. 17 (2006), 637-652.
  • [15] Kilbas A. A. and Saigo M., On Mittag-Leffler type function, fractional calculus operators and solutions of integral equations, Integral Transform. Spec. Funct. 4 (1996), 355-370.
  • [16] Kilbas A. A., Saigo M. and Saxena R. K., Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral Transform. Spec. Funct. 15 (2004), 31-49.
  • [17] Kilbas A. A., Srivastava H. M. and Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, 2006.
  • [18] Luo M.-J., Milovanovic G. V. and Agarwal P., Some results on the extended beta and extended hypergeometric functions, Applied Mathematics and Computation 248 (2015), 631-651.
  • [19] Özergin E., Öarslan M. A. and Altın, A. Extension of gamma, beta and hypergeometric function, J. Comput. Appl. Math. 235 (2011), 4601-4610.
  • [20] Özarslan M. A. and Yılmaz B., The extended Mittag-Leffler function and its properties, J. Inequal. Appl. 2014:85 (2014), https://doi.org/10.1186/1029-242X-2014-85.
  • [21] Parmar R. K., A new generalization of Gamma, Beta, hypergeometric and confluent hypergeometric functions, Matematiche (Catania) 69 (2013), 33-52.
  • [22] Prabhakar T. R., A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J. 19 (1971), 7-15.
  • [23] Samko S. G., Kilbas A. A. and Marichev O. I., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon et al. 1993.
  • [24] Sharma M. and Jain R., A note on a generalized M-series as a special function of fractional calculus, Fract. Calc. Appl. Anal. 12:4 (2009), 449-452.
  • [25] Sneddon I. N., The Use of Integral Transforms, Tata McGraw-Hill, New Delhi, 1979.
  • [26] Spiegel M. R., Theory and Problems of Laplace Transforms, Schaums Outline Series, McGraw-Hill, New York, 1965.
  • [27] Srivastava H. M., Agarwal P. and Jain S., Generating functions for the generalized Gauss hypergeometric functions, Appl. Math. Comput. 247 (2014), 348-352.
  • [28] Srivastava H. M. and Karlsson P. W., Multiple Gaussian hypergeometric Series, Ellis Horwood Series: Mathematics and its Applications. Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1985.
  • [29] Srivastava H. M., Jain R. and Bansal M. K., A study of the S-generalized Gauss hypergeometric function and its associated integral transforms, Turkish J. Anal. Number Theory 3 (2015), 101-104.