Numerical Solution of Burger’s Type Equation Using Finite Element Collocation Method with Strang Splitting

The nonlinear Burgers equation, which has a convection term, a viscosity term and a time dependent term in its structure, has been split according to the time term and then has been solved by finite element collocation method using cubic B-spline bases. By splitting the equation Ut + UUx = vUxx into two simpler sub problems Ut + UUx = 0 and Ut − vUxx = 0 have been obtained. A discretization process has been performed for each of these sub-problems and the stability analyzes have been carried out by Fourier (von Neumann) series method. Then, both sub-problems have been solved using the Strang splitting technique to obtain numerical results. To see the effectiveness of the present method, which is a combination of finite element method and Strang splitting technique, we have calculated the frequently used error norms kek1 , L2 and L∞ in the literature and have made a comparison between exact and a numerical solution.

___

[1] Bateman, H.: Some recent researches on the motion of fluids. Monthly Weather Rev. 43, 163-170 (1915).

[2] Jawad, A.J.M., Kumar, S., Biswas, A.: Soliton solutions of a few nonlinear wave equations in engineering sciences. Sharif University of Technology Scientica Iranica, Transactions D 21(3), 861-869 (2014).

[3] Neirameh, A., Eslami, M.: An analytical method for finding exact solitary wave solutions of the coupled (2+1)- dimensional Painleve Burgers equation. Scientia Iranica B 24(2), 715-726 (2017) .

[4] Haq, S., Hussain, A., Uddin, M.: On the numerical solution of nonlinear Burgers’-type equations using meshless method of lines. Applied Mathematics and Computation 218, 6280-6290 (2012) . doi:10.1016/j.amc.2011.11.106

[5] Ali, A.H.A., Gardner, G.A., Gardner, L.R.T.: A collocation solution for Burgers’ equation using cubic B-spline finite elements. Comput. Methods Appl. Mech.Eng. 100, 325-337 (1992).

[6] Arora, G., Singh, B. K.: Numerical solution of Burgers’ equation with modified cubic B-spline differential quadrature method. Appl. Math. Comput. 224, 166-177 (2013). http://dx.doi.org/10.1016/j.amc.2013.08.071

[7] Asaithambi, A.: Numerical solution of the Burgers’ equation by automatic differentiation. Appl. Math. Comput. 216, 2700-2708 (2010). doi:10.1016/j.amc.2010.03.115

[8] Benton, E., Platzman, G.W.: A table of solutions of the one-dimensional Burges equations. Quart. Appl. Math. 30, 195-212 (1972).

[9] Bratsos, A.G.: A fourth-order numerical scheme for solving the modified Burgers equation. Computers and Mathematics with Applications 60, 1393-1400 (2010). doi:10.1016/j.camwa.2010.06.021

[10] Burgers, J.M.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171-199 (1948).

[11] Burgers, J.M.: Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion. Trans. R. Neth. Acad. Sci. Amst. 17, 1-53 (1939) .

[12] Cole, J.D.: On a quasilinear parabolic equation occurring in aerodynamics. Quart. Appl. Math. 9, 225-236 (1951) .

[13] Da ˘g, ˙I., Irk, D., Saka, B.: A numerical solution of the Burgers’ equation using cubic B-splines. Applied Mathematics and Computation 163, 199-211 (2005). doi:10.1016/j.amc.2004.01.028

[14] Da ˘g, ˙I., Irk, D., ¸Sahin, A.: B-spline collocation methods for numerical solitions of the Burgers’ equation. Mathematical Problems in Engineering 2005:5, 521-538 (2005). DOI: 10.1155/MPE.2005.521

[15] Korkmaz, A., Da ˘g, ˙I.: Cubic B-spline differential quadrature methods and stability for Burgers’ equation. International Journal for Computer-Aided Engineering and Software 30, 320-344 (2013). DOI: 10.1108/02644401311314312

[16] Brezis, H., Browder, F.: Partial Differential Equations in the 20th Century. 135, 76-144 (1998).

[17] Ganaie, I.A., Kukreja, V.K.: Numerical solution of Burgers’ equation by cubic Hermite collocation method. Applied Mathematics and Computation 237, 571-581 (2014). http://dx.doi.org/10.1016/j.amc.2014.03.102.

[18] Geiser, J.: Iterative Splitting Methods for Differential Equations. CRC Press. London (2011).

[19] Gulsu, M.: A finite difference approach for solution of Burgers equation. Applied Mathematics and Computation 175, 1245-1255 (2006). doi:10.1016/j.amc.2005.08.042

[20] Zhu, C.G., Wang, R.H.: Numerical solution of Burgers’ equation by cubic B-spline quasi-interpolation. Appl. Math. Comput. 208, 260-272 (2009). DOI: 10.1016/j.amc.2008.11.045.

[21] Jiwari, R.: A Haar wavelet quasilinearization approach for numerical simulation of Burgers’ equation. Computer Physics Communications 183, 2413-2423 (2012) . doi:10.1016/j.cpc.2012.06.009.

[22] Raslan, K.R.: A Collocation solution for burgers equation using quadratic B-spline finite elements. Intern. J. Computer Math. 80 931-938 (2003). DOI: 10.1080=0020716031000079554

[23] Kutluay, S., Esen, A., Da ˘g, ˙I.: Numerical solutions of the Burgers’ equation by the least-squares quadratic B-spline finite element method. Journal of Computational and Applied Mathematics 167, 21–33 (2004). doi:10.1016/j.cam.2003.09.043

[24] Kutluay, S., Esen, A.: A Lumped galerkin method for solving the Burgers equation. International Journal of Computer Mathematics 81, 1433–1444 (2004). DOI: 10.1080/00207160412331286833

[25] Jiwari, R.: A hybrid numerical scheme for the numerical solution of the Burgers’ equation. Computer Physics Communications 188 59–67 (2015). http://dx.doi.org/10.1016/j.cpc.2014.11.004

[26] Seydao ˘glu, M., Erdo ˘gan, U., Özi¸s, T.: Numerical solution of Burgers’ equation with high order splitting methods. Journal of Computational and Applied Mathematics 291, 410-421 (2016). http://dx.doi.org/10.1016/j.cam.2015.04.021

[27] Sarboland, M., Aminataei, A.: On the Numerical Solution of One-Dimensional Nonlinear Nonhomogeneous Burgers’ Equation. Journal of Applied Mathematics. 2014, Article ID 598432, 15 pages(2014), http://dx.doi.org/10.1155/2014/598432

[28] Ganaie, I.A., Kukreja, V.K.: Numerical solution of Burgers’ equation by cubic Hermite collocation method. Applied Mathematics and Computation 237, 571-581 (2014). http://dx.doi.org/10.1016/j.amc.2014.03.102

[29] Ashpazzadeh, E., Han, B., Lakestani, M.: Biorthogonal multiwavelets on the interval for numerical solutions of Burgers’ equation. Journal of Computational and Applied Mathematics 317, 510-534 (2017). http://dx.doi.org/10.1016/j.cam.2016.11.045

[30] Mukundan, V., Awasthi, A.: Efficient numerical techniques for Burgers’ equation. Applied Mathematics and Computation 262, 282-297 (2015). http://dx.doi.org/10.1016/j.amc.2015.03.122

[31] Shesha, S.R., Nargund, A.L., Bujurke, N.M.: Numerical solution of non-planar Burgers equation by Haar wavelet method. Journal of Mathematical Modeling 5(2), 89-118 2017.

[32] Tamsir, M., Srivastava, V.K., Jiwari, R.: An algorithm based on exponential modified cubic B-spline differential quadrature method for nonlinear Burgers’ equation. Applied Mathematics and Computation 290, 111-124 (2016). http://dx.doi.org/10.1016/j.amc.2016.05.048

[33] Kutluay, S., Bahadir, A.R., Özde¸s, A.: Numerical solution of one-dimensional Burgers equation: explicit and exactexplicit finite difference methods. Journal of Computational and Applied Mathematics 103, 251-261 (1999).

[34] Gao, Y., Le, L., Shi, B.: Numerical solution of Burgers’ equation by lattice Boltzmann method. Applied Mathematics and Computation 219, 7685-7692 (2013). http://dx.doi.org/10.1016/j.amc.2013.01.056

[35] Mittal, R.C., Jain, R.K.: Numerical solutions of nonlinear Burgers’ equation with modified cubic B-splines collocation method. Applied Mathematics and Computation 218, 7839–7855 (2012). doi:10.1016/j.amc.2012.01.059

[36] Prenter, P.M.: Splines and Variational Methods. Wiley Publications. New York (1975).

[37] Ramadan, M. A., El-Danaf, T. S., Abd Alaal, F.E.I.: A numerical solution of the Burgers equation using septic B-splines. Chaos, Solitons and Fractals 26, 795-804 (2005). doi:10.1016/j.chaos.2005.01.054

[38] Xiea, S.S., Heob, S., Kimc, S., Wooc, G., Yi, S.: Numerical solution of one-dimensional Burgers’ equation using reproducing kernel function. Journal of Computational and Applied Mathematics 214, 417-434 (2008). doi:10.1016/j.cam.2007.03.010

[39] Sportisse, B.: An analysis of operator splitting techniques in the stiff case. Journal of Computational Physics 161, 140-168 (2000). doi:10.1006/jcph.2000.6495

[40] Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506-517 (1968).

[41] Gulsu, M., Özi¸s, T.: Numerical solution of Burgers equation with restrictive Taylor approximation. Applied Mathematics and Computation 171, 1192-1200 (2005). doi:10.1016/j.amc.2005.01.106

[42] Xu, M., Wang, R.H., Zhang, J.H., Fang, Q.: A novel numerical scheme for solving Burgers’ equation. Applied Mathematics and Computation 217, 4473-4482 (2011). doi:10.1016/j.amc.2010.10.050

[43] VonNeumann, J., Richtmyer, R. D.: A Method for the Numerical Calculation of Hydrodynamic Shocks. J. Appl. Phys. 21, 232-237 (1950).