Green Synthesis Iron Oxide Nanoparticles (Fe@AV NPs) Induce Developmental Toxicity and Anxiety-Like Behavior in Zebrafish Embryo-Larvae

Green Synthesis Iron Oxide Nanoparticles (Fe@AV NPs) Induce Developmental Toxicity and Anxiety-Like Behavior in Zebrafish Embryo-Larvae

The synthesis of nanoparticles and the usage areas of these nanoparticles show a rapid increase. In addition to the beneficial use of nanoparticles, their toxic effects cannot be ignored. In our study, iron oxide nanoparticle (Fe@AV NPs) (mean size: 20.852 nm) was synthesized from Aloe vera plant and the developmental toxicity of zebrafish was investigated. Zebrafish embryo-larvae were treated with different concentrations of Fe@AV NPs (1, 10, and 50 mg/L) starting at 4 hours after fertilization and continuing until 96 hours, and different developmental parameters (such as survival rate, hatchability rates, malformations, and behavior) were examined. In our study, it was determined that Fe@AV NPs caused developmental toxicity in zebrafish embryos depending on the dose increase. More than 60% died at 96 hours, especially in the highest (50 mg/L) application group. It was observed that Fe@AV NPs decreased and delayed the success of exiting the chorion depending on the dose increase, and caused various morphological abnormalities (like pericardial edema, tail deformation, and scoliosis) in all application groups except the lowest application group (1 mg/L). While 10 mg/L Fe@AV NPs caused sleep-like behaviors during the daytime by decreasing the daytime motility of the larvae, it caused hyperactivity by increasing their nocturnal motility. The results of thigmotaxis, which is an anxiety parameter, were found to increase anxiety at 10 mg/L Fe@AV NPs exposure.Our findings showed that Fe@AV NPs synthesized from Aloe vera plant have in vivo toxicity and their use at concentrations lower than 1 mg/L can be safe in environmental and medical applications.

___

  • Abid, M. A., Kadhim, D. A., & Aziz, W. J. (2022). Iron oxide nanoparticle synthesis using trigonella and tomato extracts and their antibacterial activity. Materials Technology, 37(8), 547-554. https://doi.org/10.1080/10667857.2020.1863572
  • Amri, A., Bouraoui, Z., Balbuena-Pecino, S., Capilla, E., Gharred, T., Haouas, Z., Guerbej, H., Hosni, K., Navarro, I., & Jebali, J. (2022). Dietary supplementation with Aloe vera induces hepatic steatosis and oxidative stress together with a disruption of cellular signaling pathways and lipid metabolism related genes’ expression in gilthead sea bream (Sparus aurata). Aquaculture, 559, 738433. https://doi.org/10.1016/j.aquaculture.2022.738433
  • Anila, P. A., Keerthiga, B., Ramesh, M., & Muralisankar, T. (2021). Synthesis and characterization of palladium nanoparticles by chemical and green methods: A comparative study on hepatic toxicity using zebrafish as an animal model. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 244, 108979. https://doi.org/10.1016/j.cbpc.2021.108979
  • Auffan, M., Matson, C. W., Rose, J., Arnold, M., Proux, O., Fayard, B., Liu, W., Chaurand, P., Wiesner, M. R., Bottero, J. Y., & Di Giulio, R. T. (2014). Salinity-dependent silver nanoparticle uptake and transformation by Atlantic killifish (Fundulus heteroclitus) embryos. Nanotoxicology, 8(sup1), 167-176. https://doi.org/10.3109/17435390.2013.869627
  • Baran, A., Sulukan, E., Türkoğlu, M., Ghosigharehagaji, A., Yildirim, S., Kankaynar, M., Bolat, I., Kaya, M., Topal, A., & Ceyhun, S. B. (2020). Is sodium carboxymethyl cellulose (CMC) really completely innocent? It may be triggering obesity. International Journal of Biological Macromolecules, 163, 2465-2473. https://doi.org/10.1016/j.ijbiomac.2020.09.169
  • Baruah, J., Chaliha, C., Kalita, E., Nath, B. K., Field, R. A., & Deb, P. (2020). Modelling and optimization of factors influencing adsorptive performance of agrowaste-derived Nanocellulose Iron Oxide Nanobiocomposites during remediation of Arsenic contaminated groundwater. International Journal of Biological Macromolecules, 164, 53-65. https://doi.org/10.1016/j.ijbiomac.2020.07.113
  • Basnet, R. M., Zizioli, D., Taweedet, S., Finazzi, D., & Memo, M. (2019). Zebrafish larvae as a behavioral model in neuropharmacology. Biomedicines, 7(1), 23. https://doi.org/10.3390%2Fbiomedicines7010023
  • Belda Marín, C., Egles, C., Humblot, V., Lalatonne, Y., Motte, L., Landoulsi, J., & Guénin, E. (2021). Gold, silver, and iron oxide nanoparticle incorporation into silk hydrogels for biomedical applications: elaboration, structure, and properties. ACS Biomaterials Science & Engineering, 7(6), 2358-2371. https://doi.org/10.1021/acsbiomaterials.1c00441
  • Chen, T. H., Lin, C. C., & Meng, P. J. (2014). Zinc oxide nanoparticles alter hatching and larval locomotor activity in zebrafish (Danio rerio). Journal of Hazardous Materials, 277, 134-140. https://doi.org/10.1016/j.jhazmat.2013.12.030
  • Choi, G. E., Kang, M. S., Kim, Y. J., Yoon, J. J., & Jeong, Y. I. (2019). Magnetically responsive drug delivery using doxorubicin and iron oxide nanoparticle-incorporated lipocomplexes. Journal of Nanoscience and Nanotechnology, 19(2), 675-679. https://doi.org/10.1166/jnn.2019.15910
  • de Almeida, V. O., Pereira, T. C. B., de Souza Teodoro, L., Escobar, M., Ordovas, C. J., Dos Santos, K. B., Weiler, J., Bogo, M. R., & Schneider, I. A. H. (2021). On the effects of iron ore tailings micro/nanoparticles in embryonic and larval zebrafish (Danio rerio). Science of The Total Environment, 759, 143456. https://doi.org/10.1016/j.scitotenv.2020.143456
  • de Medeiros, A. M., Khan, L. U., da Silva, G. H., Ospina, C. A., Alves, O. L., de Castro, V. L., & Martinez, D. S. T. (2021). Graphene oxide-silver nanoparticle hybrid material: an integrated nanosafety study in zebrafish embryos. Ecotoxicology and Environmental Safety, 209, 111776. https://doi.org/10.1016/j.ecoenv.2020.111776
  • Drapeau, P., Saint-Amant, L., Buss, R. R., Chong, M., McDearmid, J. R., & Brustein, E. (2002). Development of the locomotor network in zebrafish. Progress in Neurobiology, 68(2), 85-111. https://doi.org/10.1016/S0301-0082(02)00075-8
  • Duan, J., Yu, Y., Shi, H., Tian, L., Guo, C., Huang, P., Zhou, X., Peng, S., & Sun, Z. (2013). Toxic effects of silica nanoparticles on zebrafish embryos and larvae. PloS One, 8(9), e74606. https://doi.org/10.1371/journal.pone.0074606
  • Elsaesser, A., & Howard, C. V. (2012). Toxicology of nanoparticles. Advanced Drug Delivery Reviews, 64(2), 129-137. https://doi.org/10.1016/j.addr.2011.09.001
  • Fang, X., Wang, H., Han, D., Xie, E., Yang, X., Wei, J., Gu, S., Gao, F., Zhu, N., Yin, X., Cheng, Q., Zhang, P., Dai, W., Chen, J., Yang, F., Yang, H. T., Linkermann, A., Gu, W., Min, J., & Wang, F. (2019). Ferroptosis as a target for protection against cardiomyopathy. Proceedings of the National Academy of Sciences, 116(7), 2672-2680. https://doi.org/10.1073/pnas.1821022116
  • Fehrmann-Cartes, K., Coronado, M., Hernandez, A. J., Allende, M. L., & Feijoo, C. G. (2019). Anti-inflammatory effects of Aloe vera on soy meal-induced intestinal inflammation in zebrafish. Fish & Shellfish Immunology, 95, 564-573. https://doi.org/10.1016/j.fsi.2019.10.075
  • Guo, X., & Mei, N. (2016). Aloe vera: A review of toxicity and adverse clinical effects. Journal of Environmental Science and Health, Part C, 34(2), 77-96. https://doi.org/10.1080%2F10590501.2016.1166826
  • Hauser, A. K., Mitov, M. I., Daley, E. F., McGarry, R. C., Anderson, K. W., & Hilt, J. Z. (2016). Targeted iron oxide nanoparticles for the enhancement of radiation therapy. Biomaterials, 105, 127-135. https://doi.org/10.1016/j.biomaterials.2016.07.032
  • Herlekar, M., Barve, S., & Kumar, R. (2014). Plant-mediated green synthesis of iron nanoparticles. Journal of Nanoparticles, 2014, 140614. https://doi.org/10.1155/2014/140614
  • Hu, Q., Guo, F., Zhao, F., & Fu, Z. (2017). Effects of titanium dioxide nanoparticles exposure on parkinsonism in zebrafish larvae and PC12. Chemosphere, 173, 373-379. https://doi.org/10.1016/j.chemosphere.2017.01.063
  • Huang, Z., Xu, B., Huang, X., Zhang, Y., Yu, M., Han, X., Song, L., Xia, Y., Zhou, Z., Wang, X., Chen, M., & Lu, C. (2019). Metabolomics reveals the role of acetyl-l-carnitine metabolism in γ-Fe2O3 NP-induced embryonic development toxicity via mitochondria damage. Nanotoxicology, 13(2), 204-220. https://doi.org/10.1080/17435390.2018.1537411
  • Hussain, I., Singh, N. B., Singh, A., Singh, H., & Singh, S. C. (2016). Green synthesis of nanoparticles and its potential application. Biotechnology Letters, 38(4), 545-560. https://doi.org/10.1007/s10529-015-2026-7
  • Kamath, V., Chandra, P., & Jeppu, G. P. (2020). Comparative study of using five different leaf extracts in the green synthesis of iron oxide nanoparticles for removal of arsenic from water. International journal of phytoremediation, 22(12), 1278-1294. https://doi.org/10.1080/15226514.2020.1765139
  • Khoei, A. J. (2021). Evaluation of potential immunotoxic effects of iron oxide nanoparticles (IONPs) on antioxidant capacity, immune responses and tissue bioaccumulation in common carp (Cyprinus carpio). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 244, 109005. https://doi.org/10.1016/j.cbpc.2021.109005
  • Kiziltan, T., Baran, A., Kankaynar, M., Şenol, O., Sulukan, E., Yildirim, S., & Ceyhun, S. B. (2022). Effects of the food colorant carmoisine on zebrafish embryos at a wide range of concentrations. Archives of Toxicology, 96(4), 1089-1099. https://doi.org/10.1007/s00204-022-03240-2
  • Kokturk, M., Yıldırım, S., Atamanalp, M., Calimli, M. H., Nas, M. S., Bolat, I., Ozhan, G., & Alak, G. (2022). Assessment of oxidative DNA damage, apoptosis and histopathological alterations on zebrafish exposed with green silver nanoparticle. Chemistry and Ecology, 38(7), 655-670. https://doi.org/10.1080/02757540.2022.2108808
  • Kokturk, M., Yıldırım, S., Calimli, M. H., Nas, M. S., Ibaokurgil, F., Ozhan, G., Atamanalp, M., & Alak, G. (2023). Perspective on green synthesis of RP-Pd/AC NPs: characterization, embryonic and neuronal toxicity assessment. International Journal of Environmental Science and Technology, 20, 871-882. https://doi.org/10.1007/s13762-022-04005-1
  • Köktürk, M., Yildirim, S., Yiğit, A., Ozhan, G., Bolat, İ., Alma, M. H., Menges, N., Alak, G., & Atamanalp, M. (2022). What is the eco-toxicological level and effects of graphene oxide-boramidic acid (GO-ED-BA NP)?: In vivo study on Zebrafish embryo/larvae. Journal of Environmental Chemical Engineering, 10(5), 108443. https://doi.org/10.1016/j.jece.2022.108443
  • Könczöl, M., Weiss, A., Stangenberg, E., Gminski, R., Garcia-Käufer, M., Gieré, R., Merfort, I., & Mersch-Sundermann, V. (2013). Cell-cycle changes and oxidative stress response to magnetite in A549 human lung cells. Chemical Research in Toxicology, 26(5), 693-702. https://doi.org/10.1021/tx300503q
  • Lee, J., Lee, M. S., & Nam, K. W. (2014). Acute toxic hepatitis caused by an Aloe vera preparation in a young patient: a case report with a literature review. The Korean Journal of Gastroenterology, 64(1), 54-58. https://doi.org/10.4166/kjg.2014.64.1.54
  • Liu, Y., Wang, Y., Li, N., & Jiang, S. (2022). Avobenzone and nanoplastics affect the development of zebrafish nervous system and retinal system and inhibit their locomotor behavior. Science of The Total Environment, 806(Part 2), 150681. https://doi.org/10.1016/j.scitotenv.2021.150681
  • Mahdavi, M., Namvar, F., Ahmad, M. B., & Mohamad, R. (2013). Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules, 18(5), 5954-5964. https://doi.org/10.3390/molecules18055954
  • Majumder, R., Das, C. K., & Mandal, M. (2019). Lead bioactive compounds of Aloe vera as potential anticancer agent. Pharmacological Research, 148, 104416. https://doi.org/10.1016/j.phrs.2019.104416
  • Malafaia, G., de Souza, A. M., Pereira, A. C., Gonçalves, S., da Costa Araújo, A. P., Ribeiro, R. X., & Rocha, T. L. (2020). Developmental toxicity in zebrafish exposed to polyethylene microplastics under static and semi-static aquatic systems. Science of The Total Environment, 700, 134867. https://doi.org/10.1016/j.scitotenv.2019.134867
  • Martin, L. M., Sheng, J., Zimba, P. V., Zhu, L., Fadare, O. O., Haley, C., Wang, M., Phillips, T. D., Conkle, J., & Xu, W. (2022). Testing an iron oxide nanoparticle-based method for magnetic separation of nanoplastics and microplastics from water. Nanomaterials, 12(14), 2348. https://doi.org/10.3390/nano12142348
  • Medina-Cruz, D., Vernet-Crua, A., Mostafavi, E., González, M. U., Martínez, L., Iii, A. A. D. J., Kusper, M., Sotelo, E., Gao, M., Geoffrion, L. D., Shah, V., Guisbiers, G., Cholula-Díaz, J. L., Guillermier, C., Khanom, F., Huttel, Y., García-Martín, J. M., & Webster, T. J. (2021). Aloe vera-mediated Te nanostructures: Highly potent antibacterial agents and moderated anticancer effects. Nanomaterials, 11(2), 514. https://doi.org/10.3390/nano11020514
  • Minjares-Fuentes, R., Femenia, A., Comas-Serra, F., & Rodríguez-González, V. M. (2018). Compositional and structural features of the main bioactive polysaccharides present in the Aloe vera plant. Journal of AOAC International, 101(6), 1711-1719. https://doi.org/10.5740/jaoacint.18-0119
  • Monje, D. S., Ruiz, O. S., Valencia, G. C., & Mercado, D. F. (2022). Iron oxide nanoparticles embedded in organic microparticles from Yerba Mate useful for remediation of textile wastewater through a photo-Fenton treatment: Ilex paraguariensis as a platform of environmental interest–Part 1. Environmental Science and Pollution Research, 29, 57127-57146. https://doi.org/10.1007/s11356-022-19744-4
  • Murugan, K., Dinesh, D., Nataraj, D., Subramaniam, J., Amuthavalli, P., Madhavan, J., Rajasekar, A., Rajan, M., Thiruppathi, K. P., Kumar, S., Higuchi, A., Nicoletti, M., & Benelli, G. (2018). Iron and iron oxide nanoparticles are highly toxic to Culex quinquefasciatus with little non-target effects on larvivorous fishes. Environmental Science and Pollution Research, 25(11), 10504-10514. https://doi.org/10.1007/s11356-017-0313-7
  • Nalimu, F., Oloro, J., Kahwa, I., & Ogwang, P. E. (2021). Review on the phytochemistry and toxicological profiles of Aloe vera and Aloe ferox. Future Journal of Pharmaceutical Sciences, 7(1), 145. https://doi.org/10.1186/s43094-021-00296-2
  • OECD. (2013) Test No. 236: Fish Embryo Acute Toxicity (FET) Test. OECD Guidelines for the Testing of Chemicals, Section, 2, 1-22.
  • Oliveira, E. M. N., Selli, G. I., von Schmude, A., Miguel, C. A. M. I. L. A., Laurent, S., Vianna, M. R. M., & Papaléo, R. M. (2020). Developmental toxicity of iron oxide nanoparticles with different coatings in zebrafish larvae. Journal of Nanoparticle Research, 22(4), 87. https://doi.org/10.1007/s11051-020-04800-2
  • Ozturk, D., Ozguven, A., Yonten, V., & Ertas, M. (2022). Green synthesis, characterization and antimicrobial activity of silver nanoparticles using Ornithogalum narbonense L. Inorganic and Nano-Metal Chemistry, 52(3), 329-341. https://doi.org/10.1080/24701556.2021.1978496
  • Paiva-Santos, A. C., Herdade, A. M., Guerra, C., Peixoto, D., Pereira-Silva, M., Zeinali, M., Mascarenhas-Melo, F., Paranhos, A., & Veiga, F. (2021). Plant-mediated green synthesis of metal-based nanoparticles for dermopharmaceutical and cosmetic applications. International Journal of Pharmaceutics, 597, 120311. https://doi.org/10.1016/j.ijpharm.2021.120311
  • Paulpandian, P., Beevi, I. S., Somanath, B., Kamatchi, R. K., Paulraj, B., & Faggio, C. (2022). Impact of Camellia sinensis iron oxide nanoparticle on growth, hemato-biochemical and antioxidant capacity of blue gourami (Trichogaster trichopterus) fingerlings. Biological Trace Element Research, 201(1), 412-424. https://doi.org/10.1007/s12011-022-03145-2
  • Pereira, A. C., Gonçalves, B. B., da Silva Brito, R., Vieira, L. G., de Oliveira Lima, E. C., & Rocha, T. L. (2020). Comparative developmental toxicity of iron oxide nanoparticles and ferric chloride to zebrafish (Danio rerio) after static and semi-static exposure. Chemosphere, 254, 126792. https://doi.org/10.1016/j.chemosphere.2020.126792
  • Perumal, S., Gopal Samy, M. V., & Subramanian, D. (2021). Selenium nanoparticle synthesis from endangered medicinal herb (Enicostema axillare). Bioprocess and Biosystems Engineering, 44(9), 1853-1863. https://doi.org/10.1007/s00449-021-02565-z
  • Qualhato, G., de Sabóia-Morais, S. M. T., Silva, L. D., & Rocha, T. L. (2018). Melanomacrophage response and hepatic histopathologic biomarkers in the guppy Poecilia reticulata exposed to iron oxide (maghemite) nanoparticles. Aquatic Toxicology, 198, 63-72. https://doi.org/10.1016/j.aquatox.2018.02.014
  • Rabiee, N., Bagherzadeh, M., Kiani, M., & Ghadiri, A. M. (2020). Rosmarinus officinalis directed palladium nanoparticle synthesis: investigation of potential anti-bacterial, anti-fungal and Mizoroki-Heck catalytic activities. Advanced Powder Technology, 31(4), 1402-1411. https://doi.org/10.1016/j.apt.2020.01.024
  • Rautela, A., & Rani, J. (2019). Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. Journal of Analytical Science and Technology, 10(1), 5. https://doi.org/10.1186/s40543-018-0163-z
  • Rawson, D. M., Zhang, T., Kalicharan, D., & Jongebloed, W. L. (2000). Field emission scanning electron microscopy and transmission electron microscopy studies of the chorion, plasma membrane and syncytial layers of the gastrula‐stage embryo of the zebrafish Brachydanio rerio: a consideration of the structural and functional relationships with respect to cryoprotectant penetration. Aquaculture Research, 31(3), 325-336. https://doi.org/10.1046/j.1365-2109.2000.00401.x
  • Rehman, N. U., Al-Riyami, S. A., Hussain, H., Ali, A., Khan, A. A. L., & Al-Harrasi, A. (2019). Secondary metabolites from resins of Aloe vera and Commiphora mukul mitigate lipid peroxidation. Acta Pharmaceutica, 69(3), 433-441. https://doi.org/10.2478/acph-2019-0027
  • Sabeena, G., Rajaduraipandian, S., Pushpalakshmi, E., Alhadlaq, H. A., Mohan, R., Annadurai, G., & Ahamed, M. (2022). Green and chemical synthesis of CuO nanoparticles: A comparative study for several in vitro bioactivities and in vivo toxicity in zebrafish embryos. Journal of King Saud University-Science, 34(5), 102092. https://doi.org/10.1016/j.jksus.2022.102092
  • Schnörr, S. J., Steenbergen, P. J., Richardson, M. K., & Champagne, D. (2012). Measuring thigmotaxis in larval zebrafish. Behavioural Brain Research, 228(2), 367-374. https://doi.org/10.1016/j.bbr.2011.12.016
  • Sheel, R., Kumari, P., Panda, P. K., Ansari, M. D. J., Patel, P., Singh, S., Kumari, B., Sarkar, B., Mallick, M. A., & Verma, S. K. (2020). Molecular intrinsic proximal interaction infer oxidative stress and apoptosis modulated in vivo biocompatibility of P. niruri contrived antibacterial iron oxide nanoparticles with zebrafish. Environmental Pollution, 267, 115482. https://doi.org/10.1016/j.envpol.2020.115482
  • Sulukan, E., Baran, A., Kankaynar, M., Kızıltan, T., Bolat, İ., Yıldırım, S., Akgül Ceyhun, H., & Ceyhun, S. B. (2023). Global warming and glyphosate toxicity (II): Offspring zebrafish modelling with behavioral, morphological and immunohistochemical approaches. Science of The Total Environment, 856(Part 1), 158903. https://doi.org/10.1016/j.scitotenv.2022.158903
  • Sulukan, E., Köktürk, M., Ceylan, H., Beydemir, Ş., Işik, M., Atamanalp, M., & Ceyhun, S. B. (2017). An approach to clarify the effect mechanism of glyphosate on body malformations during embryonic development of zebrafish (Daino rerio). Chemosphere, 180, 77-85. https://doi.org/10.1016/j.chemosphere.2017.04.018
  • Thirumurthi, N. A., Raghunath, A., Balasubramanian, S., & Perumal, E. (2022). Evaluation of maghemite nanoparticles–induced developmental toxicity and oxidative stress in zebrafish embryos/larvae. Biological Trace Element Research, 200(5), 2349-2364. https://doi.org/10.1007/s12011-021-02830-y
  • Ucar, A., Parlak, V., Ozgeris, F. B., Yeltekin, A. C., Arslan, M. E., Alak, G., Turkez, H., Kocaman, E. M., & Atamanalp, M. (2022). Magnetic nanoparticles-induced neurotoxicity and oxidative stress in brain of rainbow trout: Mitigation by ulexite through modulation of antioxidant, anti-inflammatory, and antiapoptotic activities. Science of The Total Environment, 838(Part 1), 155718. https://doi.org/10.1016/j.scitotenv.2022.155718
  • Verma, S. K., Nisha, K., Panda, P. K., Patel, P., Kumari, P., Mallick, M. A., Sarkar, B., & Das, B. (2020). Green synthesized MgO nanoparticles infer biocompatibility by reducing in vivo molecular nanotoxicity in embryonic zebrafish through arginine interaction elicited apoptosis. Science of The Total Environment, 713, 136521. https://doi.org/10.1016/j.scitotenv.2020.136521
  • Viljoen, A. M., Van Wyk, B. E., & Newton, L. E. (2001). The occurrence and taxonomic distribution of the anthrones aloin, aloinoside and microdontin in Aloe. Biochemical Systematics and Ecology, 29(1), 53-67. https://doi.org/10.1016/s0305-1978(00)00024-7
  • von Hellfeld, R., Brotzmann, K., Baumann, L., Strecker, R., & Braunbeck, T. (2020). Adverse effects in the fish embryo acute toxicity (FET) test: A catalogue of unspecific morphological changes versus more specific effects in zebrafish (Danio rerio) embryos. Environmental Sciences Europe, 32(1), 122. https://doi.org/10.1186/s12302-020-00398-3
  • Xiao, Z., Yuan, M., Yang, B., Liu, Z., Huang, J., & Sun, D. (2016). Plant-mediated synthesis of highly active iron nanoparticles for Cr (VI) removal: Investigation of the leading biomolecules. Chemosphere, 150, 357-364. https://doi.org/10.1016/j.chemosphere.2016.02.056
  • Xue, W., Liu, Y., Zhang, N., Yao, Y., Ma, P., Wen, H., Huang, S., Luo, Y., & Fan, H. (2018). Effects of core size and PEG coating layer of iron oxide nanoparticles on the distribution and metabolism in mice. International journal of Nanomedicine, 13, 5719. https://doi.org/10.2147/IJN.S165451
  • Zhang, Y., Zhu, L., Zhou, Y., & Chen, J. (2015). Accumulation and elimination of iron oxide nanomaterials in zebrafish (Danio rerio) upon chronic aqueous exposure. Journal of Environmental Sciences, 30, 223-230. https://doi.org/10.1016/j.jes.2014.08.024
  • Zheng, N., Sun, X., Shi, Y., Chen, L., Wang, L., Cai, H., Han, C., Liao, T., Yang, C., Zuo, Z., & He, C. (2023). The valence state of iron-based nanomaterials determines the ferroptosis potential in a zebrafish model. Science of The Total Environment, 855, 158715. https://doi.org/10.1016/j.scitotenv.2022.158715
  • Zhu, X., Tian, S., & Cai, Z. (2012). Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages. PLoS One, 7(9), e46286. https://doi.org/10.1371/journal.pone.0046286