Cu, Cd, As and Hg resistance levels in Escherichia coli isolated from Mediterranean mussel and sea snail in the Southeastern Black Sea

Marine environment is exposed to various pollutants such as heavy metals, pesticides, and antibiotics. Bacterial resistance to these pollutants is a global problem all over the world. In this study, Mediterranean mussel (Mytilus galloprovincialis) and sea snail (Rapana venosa) were collected from 12 sampling points from Artvin, Rize, Trabzon, and Giresun Coasts of Black Sea, Turkey. A total of 54 Escherichia coli isolated from Mediterranean mussel and sea snail were tested for their ability to tolerate Cu, Cd, As, and Hg. For this purpose, minimum inhibitory concentration (MIC) tests for all isolates to the Cu, Cd, As, and Hg were done to determine tolerance or resistance using the broth dilution technique. MIC concentration for Cu, Cd, As, and Hg ranged between 100-400 μg/ml, 100-200 μg/ml, 25-400 μg/ml, and 3.125-25 μg/ml, respectively. All of the strains were determined as resistant to Cu, but sensitive to As. Resistance to Hg was determined as 7.4 %. The most common resistance gene in the bacteria was nccA and followed by chrB and merA. Tolerance or resistance of the bacteria to toxic pollutants including heavy metal(oid)s is of significant ecological importance. These bacteria could be used for monitoring environmental heavy metal(oid) pollution.

Kaynakça

Abou-Shanab, R. A. I., van Berkum, P. & Angle, J. S. (2007). Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere, 68(2): 360-367. https://doi.org/10.1016/j.chemosphere.2006. 12.051

Abskharon, R. N. N., Hassan, S. H. A., Gad El-Rab, S. M. F. & Shoreit, A. A. M. (2008). Heavy metal resistant of E. coli isolated from wastewater sites in Assiut City, Egypt. Bulletin of Environmental Contamination and Toxicology, 81(3): 309. https://doi.org/10.1007/s00128- 008-9494-6

Akçay, M. & Moon, C. J. (2004). The environmental impact of mining in the Pontides, Turkey: Reconnaissance sampling and GIS-based analysis. Geochemistry: Exploration, Environment, Analysis, 4(4): 317-328. https://doi.org/10.1144/1467-7873/03-052

Akinbowale, O. L., Peng, H., Grant, P. & Barton, M. D. (2007). Antibiotic and heavy metal resistance in motile aeromonads and pseudomonads from rainbow trout (Oncorhynchus mykiss) farms in Australia. International Journal of Antimicrobial Agents, 30(2): 177-182. https://doi.org/10.1016/j.ijantimicag.2007.03.012

Avşar, C. & Berber, İ. (2014). Plasmid profiling and antibiotics resistance of Escherichia coli strains isolated from Mytilus galloprovincialis and seawater. Journal of Coastal Life Medicine, 2(9): 689-693. https://doi.org/10.12980/JCLM.2.2014JCLM-2014-0069

Baltas, H., Sirin, M., Dalgic, G., Bayrak, E. Y. & Akdeniz, A. (2017). Assessment of metal concentrations (Cu, Zn, and Pb) in seawater, sediment and biota samples in the coastal area of Eastern Black Sea, Turkey. Marine Pollution Bulletin, 122(1-2): 475-482. https://doi.org/10.1016/j.marpolbul.2017.06.059

Bat, L. & Öztekin, H. C. (2016). Heavy metals in Mytilus galloprovincialis, Rapana venosa and Eriphia verrucosa from the Black Sea coasts of Turkey as bioindicators of pollution. Walailak Journal of Science and Technology, 13(9): 715-728.

Boran, H., Terzi, E., Altinok, I., Capkin, E. & Bascinar, N. (2013). Bacterial diseases of cultured Mediterranean horse mackerel (Trachurus mediterraneus) in sea cages. Aquaculture, 396: 8-13. https://doi.org/10.1016/ j.aquaculture.2013.02.025

Capkin, E., Ozdemir, S., Ozturk, R. C. & Altinok, I. (2017). Determination and transferability of plasmid‐mediated antibiotic resistance genes of the bacteria isolated from rainbow trout. Aquaculture Research, 48(11): 5561- 5575.

Capkin, E., Terzi, E. & Altinok, I. (2015). Occurrence of antibiotic resistance genes in culturable bacteria isolated from Turkish trout farms and their local aquatic environment. Diseases of Aquatic Organisms, 114(2): 127-137. https://doi.org/10.3354/dao02852

Chapman, J. S. (2003). Disinfectant resistance mechanisms, cross-resistance, and co-resistance. International Biodeterioration & Biodegradation, 51(4): 271-276. https://doi.org/10.1016/S0964-8305(03)00044-1

CLSI (Clinical and Laboratory Standards Institute). (2018). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, (11th Ed.). Standard M07, 112

Drapkin, E. (1963). Effect of Rapana bezoar Linne (Mollusca, Muricidae) on the Black Sea fauna. Doklady Akademii Nauk SRR.

Fuentes, A., Fernández-Segovia, I., Escriche, I. & Serra, J. A. (2009). Comparison of physico-chemical parameters and composition of mussels (Mytilus galloprovincialis Lmk.) from different Spanish origins. Food Chemistry, 112(2): 295-302. https://doi.org/https://doi.org/ 10.1016/j.foodchem.2008.05.064

Gedik, K. (2018a). Bioaccessibility of Cd, Cr, Cu, Mn, Ni, Pb, and Zn in Mediterranean mussel (Mytilus galloprovincialis Lamarck, 1819) along the southeastern Black Sea coast. Human and Ecological Risk Assessment: An International Journal, 24(3): 754-766. https://doi.org/10.1080/10807039.2017.1398632

Gedik, K. (2018b). Bioaccessibility of heavy metals in rapa whelk Rapana venosa (Valenciennes, 1846): Assessing human health risk using an in vitro digestion model. Human and Ecological Risk Assessment: An International Journal, 24(1): 202-213. https://doi.org/10.1080/10807039.2017.1373329

Gul-Seker, M. & Mater, Y. (2009). Assessment of metal and antibiotic-resistance in marine bacteria isolated from Izmit Bay and Bosphorus entrance of Marmara and Black Sea, Turkey. Fresenius Environmental Bulletin, 18(11A): 2192-2202.

Kacar, A. (2011). Some microbial characteristics of mussels (Mytilus galloprovincialis) in coastal city area. Environmental Science and Pollution Research, 18(8): 1384. https://doi.org/10.1007/s11356-011-0487-3

Li, X., Gu, A. Z., Zhang, Y., Xie, B., Li, D. & Chen, J. (2019). Sub-lethal concentrations of heavy metals induce antibiotic resistance via mutagenesis. Journal of Hazardous Materials, 369: 9-16. https://doi.org/10.1016/j.jhazmat.2019.02.006

Matyar, F., Akkan, T., Uçak, Y. & Eraslan, B. (2010). Aeromonas and Pseudomonas: antibiotic and heavy metal resistance species from Iskenderun Bay, Turkey (northeast Mediterranean Sea). Environmental Monitoring and Assessment, 167(1-4): 309-320. https://doi.org/10.1007/s10661-009-1051-1

Matyar, F., Eraslan, B., Akkan, T., Kaya, A. & Dinçer, S. (2009). İskenderun Körfezi balıklarından izole edilen bakterilerde antibiyotik ve ağır metal dirençliliklerinin araştırılması. Biyoloji Bilimleri Araştırma Dergisi, 2(2), 1-5.

Misra, T. K., Brown, N. L., Fritzinger, D. C., Pridmore, R. D., Barnes, W. M., Haberstroh, L. & Silver, S. (1984). Mercuric ion-resistance operons of plasmid R100 and transposon Tn501: The beginning of the operon including the regulatory region and the first two structural genes. Proceedings of the National Academy of Sciences, 81(19): 5975-5979. https://doi.org/10.1073/ pnas.81.19.5975

Nies, A., Nies, D. H. & Silver, S. (1990). Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant from Alcaligenes eutrophus. Journal of Biological Chemistry, 265(10): 5648-5653. https://www.jbc.org/content/265/10/5648.long

Nies, D. H. (1999). Microbial heavy-metal resistance. Applied Microbiology and Biotechnology, 51(6): 730-750. https://doi.org/10.1007/s002530051457

Nieto, J., Ventosa, A. & Ruiz-Berraquero, F. (1987). Susceptibility of halobacteria to heavy metals. Applied Environmental and Public Health Microbiology, 53(5): 1199-1202.

Saglam, H., Kutlu, S., Dagtekin, M., Bascinar, S., Sahin, A., Selen, H. & Duzgunes, E. (2015). Population biology of Rapana venosa (Valenciennes, 1846) (Gastropoda: Neogastropoda) in the south-eastern Black Sea of Turkey. Cahiers de Biologie Marine, 56(4): 363-368. https://doi.org/10.21411/CBM.A.2A889E43

Sipahi, N., Mutlu, C. & Akkan, T. (2013). Antibiotic and heavy metal resistance levels of Enterobacteriaceae isolated from retail fishes in Giresun. Gıda, 38(6): 343-349. https://doi.org/10.5505/gida.2013.55264

Terzi, E. (2018a). Antimicrobial resistance profiles and tetracycline resistance genes of Escherichia coli in Mediterranean mussel and sea snails collected from Black Sea, Turkey. Alinteri Journal of Agriculture Sciences, 33(1): 43-49. https://doi.org/10.28955/alinterizbd.355019

Terzi, E. (2018b). Determination of antimicrobial resistance profiles of the bacteria isolated from cultured sturgeons. Menba Kastamonu University Faculty of Fisheries Journal, 4(2): 7-13.

Terzi, E. & Isler, H. (2019). Antibiotic resistance genes of Escherichia coli in coastal marine environment of Eastern Black Sea, Turkey. Fresenius Environmental Bulletin, 28(2A): 1594-1601.

Toroglu, S. & Dincer, S. (2009). Heavy metal resistances of Enterobacteriaceae from Aksu River (Turkey) polluted with different sources. Asian Journal of Chemistry, 21(1): 411-420.

Tsi, C., Ma, X., Lou, Z. & Zhang, F. (1983). Illustrations of the fauna of China (Mollusca). (2nd Ed.) Science Press, Beijing, China. 150p.

Ture, M., Kilic, M. B. & Altinok, I. (2020). Relationship between heavy metal accumulation in fish muscle and heavy metal resistance genes in bacteria isolated from fish. Biological Trace Element Research, https://doi.org/10.1007/s12011-020-02246-0

Yang, S., Deng, W., Liu, S., Yu, X., Mustafa, G. R., Chen, S., He, L., Ao, X., Yang, Y., Zhou, K., Li, B., Han, X., Xu, X. & Zou, L. (2020). Presence of heavy metal resistance genes in Escherichia coli and Salmonella, and analysis of resistance gene structure in E. coli E308. Journal of Global Antimicrobial Resistance, 21: 420-426. https://doi.org/https://doi.org/10.1016/j.jgar.2020.01.00 9

Kaynak Göster

  • ISSN: 2147-9666
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2012
  • Yayıncı: Adem Yavuz Sönmez

813 188