Effects of Nitrogen and Phosphorus Concentrations on the Growth and Lipid Accumulation of Microalgae Scenedesmus obliquus

In the study, Scenedesmus obliquus green algae was cultivated under laboratory conditions at 21±2°C, 16:8 (light:dark) photoperiod and continuous aeration in different nitrogen and phosphorus ratio nutrient medium and its growth was determined. Dry weight, cell density (optical density) and chlorophyll a and b were used to determine the growth of the algae. The best growth was determined in the group consisting of 30 ml NaNO3+10 ml PO4. The amount of biomass obtained was determined as 1.549 gL-1 in this group. The lowest values were the group containing 5 ml NaNO3+5 ml PO4. With the decrease in the amount of nitrogen in the medium, an increase in the amount of carotene and a decrease in the amount of chl a and b were detected. The highest lipid values were determined as 36.7% in the group containing 5 ml NaNO3+5 ml PO4 and 36.2% in the group containing 5 ml NaNO3+10 ml PO4.

___

  • Abd El Baky, H. H., El-Baroty, G. S., Bouaid, A., Martinez, M., & Aracil, J. (2012). Enhancement of lipid accumulation in Scenedesmus obliquus by optimizing CO2 and Fe3+ levels for biodiesel production. Bioresource Technology, 119, 429-432. https://doi.org/10.1016/j.biortech.2012.05.104
  • Adenan, N. S., Yusoff, F. M., Medipally, S. R., & Shariff, M. (2016). Enhancement of lipid production in two marine microalgae under different levels of nitrogen and phosphorus deficiency. Journal of Environmental Biology, 37(4 Spec No), 669-676.
  • Anand, J., & Arumugam, M. (2015). Enhanced lipid accumulation and biomass yield of Scenedesmus quadricauda under nitrogen starved condition. Bioresource Technology, 188, 190-194. https://doi.org/10.1016/j.biortech.2014.12.097
  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. https://doi.org/10.1139/o59-099
  • Damiani, M. C., Popovich, C. A., Constenla, D., & Leonardi, P. I. (2010). Lipid analysis in Haematococcus pluvialis to assess its potential use as a biodiesel feedstock. Bioresource Technology, 101(11), 3801-3807. https://doi.org/10.1016/j.biortech.2009.12.136
  • Dayananda, C., Sarada, R., Kumar, V., & Ravishankar, G. A. (2007). Isolation and characterization of hydrocarbon producing green alga Botryococcus braunii from Indian freshwater bodies. Electronic Journal of Biotechnology, 10(1), 78-91.
  • El-Sheekh, M., Abomohra, A. E. F., & Hanelt, D. (2013). Optimization of biomass and fatty acid productivity of Scenedesmus obliquus as a promising microalga for biodiesel production. World Journal of Microbiology and Biotechnology, 29(5), 915-922. https://doi.org/10.1007/s11274-012-1248-2
  • Gouveia, L., & Oliveira, A. C. (2009). Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology and Biotechnology, 36(2), 269-274. https://doi.org/10.1007/s10295-008-0495-6
  • Ho, S. H., Chen, C. Y., & Chang, J. S. (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113, 244-252. https://doi.org/10.1016/j.biortech.2011.11.133
  • Illman, A. M., Scragg, A. H., & Shales, S. W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 27(8), 631-635. https://doi.org/10.1016/S0141-0229(00)00266-0
  • Kaewkannetra, P., Enmak, P., & Chiu, T. (2012). The effect of CO2 and salinity on the cultivation of Scenedesmus obliquus for biodiesel production. Biotechnology and Bioprocess Engineering, 17(3), 591-597. https://doi.org/10.1007/s12257-011-0533-5
  • Kamalanathan, M., Pierangelini, M., Shearman, L. A., Gleadow, R., & Beardall, J. (2016). Impacts of nitrogen and phosphorus starvation on the physiology of Chlamydomonas reinhardtii. Journal of Applied Phycology, 28(3), 1509-1520. https://doi.org/10.1007/s10811-015-0726-y
  • Li, Y., Fei, X., & Deng, X. (2012). Novel molecular insights into nitrogen starvation-induced triacylglycerols accumulation revealed by differential gene expression analysis in green algae Micractinium pusillum. Biomass and Bioenergy, 42, 199-211. https://doi.org/10.1016/j.biombioe.2012.03.010
  • Liu, Z. Y., Wang, G. C., & Zhou, B. C. (2008). Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology, 99(11), 4717-4722. https://doi.org/10.1016/j.biortech.2007.09.073
  • Mandal, S., & Mallick, N. (2009). Microalga Scenedesmus obliquus as a potential source for biodiesel production. Applied Microbiology and Biotechnology, 84(2), 281-291. https://doi.org/10.1007/s00253-009-1935-6
  • McGinnis, K. M., Dempster, T. A., & Sommerfeld, M. R. (1997). Characterization of the growth and lipid content of the diatom Chaetoceros muelleri. Journal of Applied Phycology, 9(1), 19-24. https://doi.org/10.1023/A:1007972214462
  • Mutlu, Y. B., Işık, O., Uslu, L., Koç, K., & Durmaz, Y. (2011). The effects of nitrogen and phosphorus deficiencies and nitrite addition on the lipid content of Chlorella vulgaris (Chlorophyceae). African Journal of Biotechnology, 10(3), 453-456.
  • Pancha, I., Chokshi, K., George, B., Ghosh, T., Paliwal, C., Maurya, R., & Mishra, S. (2014). Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology, 156, 146-154. https://doi.org/10.1016/j.biortech.2014.01.025
  • Sartory, D. P., & Grobbelaar, J. U. (1984). Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia, 114(3), 177-187. https://doi.org/10.1007/BF00031869
  • Sheehan, J., Dunahay, T., Benemann, J., & Roessler, P. (1998). Look back at the US department of energy's aquatic species program: biodiesel from algae; close-out report (No. NREL/TP-580-24190). National Renewable Energy Lab., Golden, CO.(US). https://doi.org/10.2172/15003040
  • Shifrin, N. S., & Chisholm, S. W. (1981). Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light-dark cycles. Journal of Phycology, 17(4), 374-384. https://doi.org/10.1111/j.1529-8817.1981.tb00865.x
  • Simionato, D., Block, M. A., La Rocca, N., Jouhet, J., Maréchal, E., Finazzi, G., & Morosinotto, T. (2013). The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus. Eukaryotic Cell, 12(5), 665-676. https://doi.org/10.1128/EC.00363-12
  • Sugimoto, K., Midorikawa, T., Tsuzuki, M., & Sato, N. (2008). Upregulation of PG synthesis on sulfur-starvation for PS I in Chlamydomonas. Biochemical and Biophysical Research Communications, 369(2), 660-665. https://doi.org/10.1016/j.bbrc.2008.02.058
  • Sukenik, A. (1991). Ecophysiological considerations in the optimization of eicosapentaenoic acid production by Nannochloropsis sp. (Eustigmatophyceae). Bioresource Technology, 35(3), 263-269. https://doi.org/10.1016/0960-8524(91)90123-2
  • Sukenik, A., Carmeli, Y., & Berner, T. (1989). Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. Journal of Phycology, 25(4), 686-692. https://doi.org/10.1111/j.0022-3646.1989.00686.x
  • Uslu, L., Işık, O., Koç, K., & Göksan, T. (2011). The effects of nitrogen deficiencies on the lipid and protein contents of Spirulina platensis. African Journal of Biotechnology, 10(3), 386-389.
  • Uslu, L., Işık, O. & Cimen, B. A. (2020). The effect of nitrogen deficiency on the growth and lipid content of Isochrysis affinis galbana in two photobioreactor systems (PBR): Tubular and flat panel. Journal of Agricultural Sciences, 26(3), 282-289. https://doi.org/10.15832/ankutbd.526989
  • Williams, S. (1984). Official methods of analysis (No. 630.24 A8 1984). Association of Official Analytical Chemists.
  • Yue, L., & Chen, W. (2005). Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae. Energy Conversion and Management, 46(11-12), 1868-1876. https://doi.org/10.1016/j.enconman.2004.10.010
  • Zar, J. H. (1999). Biostatistical Analysis. 4th ed. Prentice Hall.