Production of antibacterial polyvinylpyrrolidone nanofibers containing silver nanoparticles via electrospinning method

Since polymeric nanofibers find extensive usage in medical applications, the risks associated with bacterial contamination must be taken into account. In this study, the production of antibacterial polyvinylpyrrolidone (PVP) nanofibers containing silver nanoparticles (AgNPs) was achieved. For this production AgNPs with the average diameters ranging from 5.69 nm to 14.83 nm were synthesized and characterized firstly. The properties of the nanofibers produced via electrospinning method were investigated by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The effect of AgNPs on the conductivity of electrospinning solutions were investigated. The stability of nanofiber mats were determined to show the crosslinking efficiency. Finally, antimicrobial tests against three types of microorganisms (E. coli, S. aureus and A. niger) were carried out according to zone of inhibition method. Antimicrobial test results proved that nanofibers containing AgNPs show inhibition against E.coli and S. aureus, while neat nanofibers not. Additionally, any antifungal activity was not observed against A. niger.

___

  • [1] Dolez P. I., “Nanomaterials definitions, classifications, and applications” in Nanoengineering: Global Approaches to Health and Safety Issues, P. I. Dolez, Ed. Amsterdam: Elsevier, 2015, pp. 3-40.
  • [2] de Mello Donegá C., “The nanoscience paradigm: “Size Matters!”,” in Nanoparticles: Workhorses of Nanoscience, C. de Mello Donegá, Ed. Berlin, Heidelberg: Springer, 2014, pp. 1-12.
  • [3] Van Der Schueren L. and De Clerck K., “Nanofibrous textiles in medical applications” in Handbook of Medical Textiles, V. T. Bartels,Ed. Oxford: Woodhead Publishing, 2011, pp. 547-566.
  • [4] Pisignano D., Polymer Nanofibers: Building Blocks for Nanotechnology. Cambridge, UK: Royal Society of Chemistry, 2013.
  • [5] Beachley V., Wen X., “Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions”, Progress in Polymer Science, 35 (7), (2010), 868-892. doi:10.1016/j.progpolymsci.2010.03.003
  • [6] Wang L., Ryan A. J., “Introduction to electrospinning” in Electrospinning for Tissue Regeneration, L. A. Bosworth and S. Dowres, Eds. Oxford, Cambridge: Woodhead Publishing, 2011, pp. 3-33.
  • [7] Fang J., Niu H., Lin T., Wang X., “Applications of electrospun nanofibers”, Chinese Science Bulletin, 53 (15), (2008), 2265-2286. doi:10.1007/s11434-008-0319-0
  • [8] Baji A., Mai Y. W., Wong S. C., Abtahi M., Chen P., “Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties”, Composites Science and Technology, 70 (5), (2010), 703-718. doi:10.1016/j.compscitech.2010.01.010
  • [9] Bhardwaj N., Kundu S. C., “Electrospinning: A fascinating fiber fabrication technique”, Biotechnology Advances, 28 (3), (2010), 325-347. doi:10.1016/j.biotechadv.2010.01.004
  • [10] Gao Y., Bach Truong Y., Zhu Y., Louis Kyratzis I., “Electrospun antibacterial nanofibers: Production, activity, and in vivo applications”, Journal of Applied Polymer Science, 131 (18), (2014), 40797. doi:10.1002/app.40797
  • [11] Burger C., Hsiao B. S., Chu B., “Nanofibrous materials and their applications”, Annual Review of Materials Research, 36 (1), (2006), 333-368. doi:10.1146/annurev.matsci.36.011205.123537
  • [12] Shi Q., Vitchuli N., Nowak J., Caldwell J. M., Breidt F. et al., “Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers prepared by atmospheric plasma treatment and electrospinning”, European Polymer Journal, 47 (7), (2011), 1402-1409. doi:10.1016/j.eurpolymj.2011.04.002
  • [13] Tran Q. H., Nguyen V. Q., Le A. T., “Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives”, Advances in Natural Sciences: Nanoscience and Nanotechnology, 4, (2013), 033001. doi:10.1088/2043-6262/4/3/033001
  • [14] Ge L., Li Q., Wang M., Ouyang J., Li X. et al., “Nanosilver particles in medical applications: synthesis, performance, and toxicity”, International Journal of Nanomedicine, 9 (1), (2014), 2399-2407. doi:10.2147/IJN.S55015
  • [15] Yu S., Yin Y., Liu J., “Silver nanoparticles in the environment”, Environmental Science-Processes & Impacts, 15 (1), (2013), 78-92. doi:10.1039/c2em30595j
  • [16] Dallas P., Sharma V. K., Zboril R., “Silver polymeric nanocomposites as advanced antimicrobial agents: Classification, synthetic paths, applications, and perspectives”, Advances in Colloid and Interface Science, 166 (1-2), (2011), 119-135. doi:10.1016/j.cis.2011.05.008
  • [17] Marambio-Jones C., Hoek E. M. V., “A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment”, Journal of Nanoparticle Research, 12 (5), (2010), 1531-1551. doi:10.1007/s11051-010-9900-y
  • [18] Iravani S., Korbekandi H., Mirmohammadi S. V., Zolfaghari B., “Synthesis of silver nanoparticles: chemical, physical and biological methods”, Journal of Research in Pharmaceutical Sciences, 9 (6), (2014), 385-406.
  • [19] León-Silva S., Fernández-Luqueño F., López-Valdez F., “Silver nanoparticles (AgNP) in the environment: a review of potential risks on human and environmental health”, Water, Air & Soil Pollution, 227 (9), (2016), 306. doi:10.1007/s11270-016-3022-9
  • [20] Tan K., Cheong K., “Advances of Ag, Cu, and Ag–Cu alloy nanoparticles synthesized via chemical reduction route”, Journal of Nanoparticle Research, 15 (4), (2013), 1537. doi:10.1007/s11051-013-1537-1
  • [21] Abbasi E., Milani M., Fekri Aval S., Kouhi M., Akbarzadeh A. et al., “Silver nanoparticles: Synthesis methods, bio-applications and properties”, Critical Reviews in Microbiology, 42 (2), (2016), 173-180. doi:10.3109/1040841X.2014.912200
  • [22] Tsuji M., Hashimoto M., Nishizawa Y., Kubokawa M., Tsuji T., “Microwave-assisted synthesis of metallic nanostructures in solution”, Chemistry-A European Journal, 11 (2), (2005), 440-452. doi:10.1002/chem.200400417
  • [23] Banach M., Pulit-Prociak J., “Synthesis, characteristics, and biocidal activity of silver nanoparticles” in Fabrication and Self-Assembly of Nanobiomaterials, A. M. Grumezescu, Ed. William Andrew Publishing, 2016, pp. 367-399.
  • [24] Tian L., Wang P., Zhao Z., Ji J., “Antimicrobial activity of electrospun poly(butylenes succinate) fiber mats containing PVP-capped silver nanoparticles”, Applied Biochemistry and Biotechnology, 171 (7), (2013), 1890-1899. doi:10.1007/s12010-013-0461-2
  • [25] Liu Y., Liu Y., Liao N., Cui F., Park M. et al., “Fabrication and durable antibacterial properties of electrospun chitosan nanofibers with silver nanoparticles”, International Journal of Biological Macromolecules, 79, (2015), 638-643. doi:10.1016/j.ijbiomac.2015.05.058
  • [26] Abdelgawad A. M., Hudson S. M., Rojas O. J., “Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems”, Carbohydrate Polymers, 100, (2014), 166-178. doi:10.1016/j.carbpol.2012.12.043
  • [27] Montazer M., Malekzadeh S. B., “Electrospun antibacterial nylon nanofibers through in situ synthesis of nanosilver: Preparation and characteristics”, Journal of Polymer Research, 19 (10), (2012), 9980. doi:10.1007/s10965-012-9980-8
  • [28] Augustine R., Kalarikkal N., Thomas S., “Electrospun PCL membranes incorporated with biosynthesized silver nanoparticles as antibacterial wound dressings”, Applied Nanoscience, 6 (3), (2016), 337–344. doi:10.1007/s13204-015-0439-1
  • [29] An J., Zhang H., Zhang J., Zhao Y., Yuan X., “Preparation and antibacterial activity of electrospun chitosan/poly(ethylene oxide) membranes containing silver nanoparticles”, Colloid and Polymer Science, 287 (12), (2009), 1425-1434. doi:10.1007/s00396-009-2108-y
  • [30] Rujitanaroj P., Pimpha N., Supaphol P., “Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles”, Polymer, 49 (21), (2008), 4723-4732. doi:10.1016/j.polymer.2008.08.021
  • [31] Jin W., Lee H. K., Jeong E. H., Park W. H., Youk J. H., “Preparation of polymer nanofibers containing silver nanoparticles by using poly(N-vinylpyrrolidone)”, Macromolecular Rapid Communications, 26 (24), (2005), 1903-1907. doi:10.1002/marc.200500569
  • [32] Wang S., Bai J., Li C., Zhang Y., Zhang J., “Ag nanoparticle-embedded one-dimensional β-CD/PVP composite nanofibers prepared via electrospinning for use in antibacterial material”, Colloid and Polymer Science, 290 (7), (2012), 667-672. doi:10.1007/s00396-011-2581-y
  • [33] Hwang S., Jeong S., “Electrospun nano composites of poly(vinyl pyrrolidone)/nano-silver for antibacterial materials”, Journal of Nanoscience and Nanotechnology, 11 (1), (2011), 610-613. doi:10.1166/jnn.2011.3243
  • [34] Shenashen M. A., El-Safty S. A., Elshehy E. A., “Synthesis, morphological control, and properties of silver nanoparticles in potential applications”, Particle and Particle Systems Characterization, 31 (3), (2014), 293–316. doi:10.1002/ppsc.201300181
  • [35] Pal A., Shah S., Devi S., “Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent”, Materials Chemistry and Physics, 114 (2-3), (2009), 530–532. doi:10.1016/j.matchemphys.2008.11.056
  • [36] Wang Y., Li Y., Yang S., Zhang G., An D. et al., “A convenient route to polyvinyl pyrrolidone/silver nanocomposite by electrospinning”, Nanotechnology, 17 (13), (2006), 3304-3307. doi:10.1088/0957-4484/17/13/037
  • [37] Kamyshny A., Magdassi S., “Aqueous dispersions of metallic nanoparticles” in Nanoscience: Colloidal and Interfacial Aspects, V. M. Starov, Ed. Boca Raton: CRC Pres, 2010, pp. 747-778.
  • [38] Tolaymat T. M., El Badawy A. M., Genaidy A., Scheckel K. G., Luxton T. P. et al., “An evidence based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers”, Science of the Total Environment, 408 (5), (2010), 999-1006. doi:10.1016/j.scitotenv.2009.11.003
  • [39] Elechiguerra J. L., Burt J. L., Morones J. R., Camacho-Bragado A., Gao X. et al., “Interaction of silver nanoparticles with HIV-1”, Journal of Nanobiotechnology, 3, (2005), 6. doi:10.1186/1477-3155-3-6
  • [40] Chen D., Qiao X., Qiu X., Chen J., “Synthesis and electrical properties of uniform silver nanoparticles for electronic applications”, Journal of Materials Science, 44, (2009), 1076-1081. doi: 10.1007/s10853-008-3204-y
  • [41] Kim J., “Reduction of silver nitrate in ethanol by poly(N-vinylpyrrolidone)”, Journal of Industrial and Engineering Chemistry, 13 (4), (2007), 566–570.
  • [42] Shin H. S., Yang H. J., Kim S. B., Lee M. S., “Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ -irradiated silver nitrate solution”, Journal of Colloid and Interface Science, 274 (1), (2004), 89-94. doi:10.1016/j.jcis.2004.02.084
  • [43] Khondoker M. A. H., Mun S. C., Kim J., “Synthesis and characterization of conductive silver ink for electrode printing on cellulose film”, Applied Physics A: Materials Science and Processing, 112 (2), (2013), 411-418. doi:10.1007/s00339-012-7419-z
  • [44] Li Z. and Wang C., One-Dimensional Nanostructures: Electrospinning Technique and Unique Nanofibers. Berlin, Heidelberg: Springer, 2013.
  • [45] Ignatova M., Manolova N., Rashkov I., “Electrospinning of poly(vinyl pyrrolidone)–iodine complex and poly(ethylene oxide)/poly(vinyl pyrrolidone)–iodine complex–a prospective route to antimicrobial wound dressing materials”, European Polymer Journal, 43 (5), (2007), 1609-1623. doi:10.1016/j.eurpolymj.2007.02.020
  • [46] Newsome T. E., Olesik S. V., “Electrospinning silica/polyvinylpyrrolidone composite nanofibers”, Journal of Applied Polymer Science, 131 (21), (2014), 40966. doi:10.1002/app.40966
  • [47] Jin M., Zhang X., Nishimoto S., Liu Z., Tryk D. et al., “Large-scale fabrication of Ag nanoparticles in PVP nanofibres and net-like silver nanofibre films by electrospinning”, Nanotechnology, 18 (7), (2007), 075605. doi:10.1088/0957-4484/18/7/075605
  • [48] Francis L., Giunco F., Balakrishnan A., Marsano E., “Synthesis, characterization and mechanical properties of nylon–silver composite nanofibers prepared by electrospinning”, Current Applied Physics, 10 (4), (2010), 1005-1008. doi:10.1016/j.cap.2009.12.025
  • [49] Zhang H., Wu M., Sen A., “Silver nanoparticle antimicrobials and related materials” in Nano-antimicrobials: Progress and Prospects, N. Cioffi and M. Rai, Eds. Berlin, Heidelberg: Springer, 2012, pp. 3-45.
  • [50] Rai M., Yadav A., Gade A., “Silver nanoparticles as a new generation of antimicrobials”, Biotechnology Advances, 27 (1), (2009), 76-83. doi:10.1016/j.biotechadv.2008.09.002
  • [51] Konop M., Damps T., Misicka A., Rudnicka L., “Certain aspects of silver and silver nanoparticles in wound care: A minireview”, Journal of Nanomaterials, 2016, (2016), 7614753. doi: 10.1155/2016/7614753
  • [52] García-Barrasa J., López-de-Luzuriaga J. M., Monge M., “Silver nanoparticles: synthesis through chemical methods in solution and biomedical applications”, Central European Journal of Chemistry, 9 (1), (2011), 7–19. doi: 10.2478/s11532-010-0124-x