Carbon nanotube supported direct borohydride fuel cell anode catalysts: the effect of catalyst loading

Energy, vital and permanent need for human life and welfare, supplied by fossil fuels such as oil, coal, and natural gas through the world has been rising gradually. However, the employment of fossil fuels to supply energy need have several disadvantages such as shortage of fossil fuels and global warming caused via fossil fuel exhaust gases. To eliminate these disadvantages of fossil fuel consumption in energy generating systems, research studies are dedicated to the alternative energy sources such as fuel cells, batteries, solar energy, wind energy. Fuel cells are the most popular alternative energy devices and attributed great importance to recompense the rapidly increasing energy demand. Direct Borohydride Fuel Cells (DBFCs), known as a special group of an alkaline direct liquid fuel cell (DLFC). At present, monometallic CNT supported Pd electrocatalysts (Pd/CNT) are prepared at varying Pd loadings via sodium borohydride (NaBH4) reduction method to investigate their NaBH4 electrooxidation activities. These monometallic Pd/CNT catalysts are characterized by X-ray Diffraction (XRD), N2 adsorptiondesorption, X-ray photoelectron spectroscopy (XPS), and Scanning Electron MicroscopyEnergy Dispersive X-ray analysis (SEM-EDX). NaBH4 electrooxidation measurements are performed with cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). The 30% Pd/CNT catalyst exhibits the highest electrochemical activity. By altering Pd loading, catalyst surface electronic structure changes significantly, leading to enhanced NaBH4 electrooxidation activity. As a conclusion, it is clear that Pd/CNT catalysts are good candidate as anode catalysts for direct borohydride fuel cells.


[1]. Kurata M., Matsui N., Ikemoto Y., Tsuboi H., “Do determinants of adopting solar home systems differ between households and micro-enterprises? Evidence from rural Bangladesh”, Renewable Energy, 129, (2018), 309-316.

[2]. Chia S.R., Ong H.C., Chew K.W., Show P.L., Phang S.-M., Ling T.C., Nagarajan D., Lee D.-J., Chang J.-S., “Sustainable approaches for algae utilisation in bioenergy production”, Renewable Energy, 129, (2018), 838-852.

[3]. El-Nagar G.A., Derr I., Fetyan A., Roth C., “One-pot synthesis of a high performance chitosan-nickel oxyhydroxide nanocomposite for glucose fuel cell and electro-sensing applications”, Applied Catalysis B: Environmental, 204, (2017), 185-199.

[4]. Hermann A., Chaudhuri T., Spagnol P., “Bipolar plates for PEM fuel cells: A review”, International journal of hydrogen Energy, 30, (2005) 1297-1302.

[5]. Peighambardoust S.J., Rowshanzamir S., Amjadi M., “Review of the proton exchange membranes for fuel cell applications”, International journal of hydrogen energy, 35 (2010) 9349-9384.

[6]. Hosseini H., Mahyari M., Bagheri A., Shaabani A., “Pd and PdCo alloy nanoparticles supported on polypropylenimine dendrimer-grafted graphene: a highly efficient anodic catalyst for direct formic acid fuel cells”, Journal of Power Sources, 247, (2014) 70- 77.

[7]. Brites Helú M.A., Fernandez W.V., Fernández J.L., “Ordered Array Electrodes Fabricated by a MaskAssisted Electron-Beam Method as Platforms for Studying Kinetic and Mass-Transport Phenomena on Electrocatalysts”, ChemElectroChem, 5, (2018) 2620- 2629.

[8]. Ulas B., Caglar A., Kivrak A., Kivrak H., “Atomic molar ratio optimization of carbon nanotube supported PdAuCo catalysts for ethylene glycol and methanol electrooxidation in alkaline media”, Chemical Papers, 73, (2019) 425-434.

[9]. Sahin O., Kivrak H., “A comparative study of electrochemical methods on Pt–Ru DMFC anode catalysts: The effect of Ru addition”, International Journal of Hydrogen Energy, 38, (2013), 901-909.

[10]. Atbas D., Çağlar A., Kivrak H., Kivrak A., “Microwave Assisted Synthesis of Sn Promoted Pt Catalysts and Their Ethanol Electro-oxidation Activities”, American Journal of Nanomaterials, 4, (2016), 8-11.

[11]. Sahin O., Duzenli D., Kivrak H., “An ethanol electrooxidation study on carbon-supported Pt-Ru nanoparticles for direct ethanol fuel cells”, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38, (2016), 628-634.

[12]. Ulas B., Caglar A., Sahin O., Kivrak H., “Composition Dependent Activity of PdAgNi Alloy Catalysts for Formic Acid Electrooxidation”, Journal of Colloid and Interface Science, 532, (2018), 47-57.

[13]. Caglar A., Sahan T., Cogenli M.S., Yurtcan A.B., Aktas N., Kivrak H., “A novel Central Composite Design based response surface methodology optimization study for the synthesis of Pd/CNT direct formic acid fuel cell anode catalyst”, International Journal of Hydrogen Energy, 43, (2018), 11002-11011.

[14]. Chen C., Xu H., Shang H., Jin L., Song T., Wang C., Gao F., Zhang Y., Du Y., “Ultrafine PtCuRh nanowire catalysts with alleviated poisoning effect for efficient ethanol oxidation”, Nanoscale, 11, (2019), 20090- 20095.

[15]. Wang Y., Zheng M., Sun H., Zhang X., Luan C., Li Y., Zhao L., Zhao H., Dai X., Ye J.-Y., “Catalytic Ru containing Pt3Mn nanocrystals enclosed with highindexed facets: Surface alloyed Ru makes Pt more active than Ru particles for ethylene glycol oxidation”, Applied Catalysis B: Environmental, 253, (2019), 11- 20.

[16]. Hosseini M.G., Rashidi N., Mahmoodi R., Omer M., “Preparation of Pt/G and PtNi/G nanocatalysts with high electrocatalytic activity for borohydride oxidation and investigation of different operation condition on the performance of direct borohydride-hydrogen peroxide fuel cell”, Materials Chemistry and Physics, 208, (2018), 207-219.

[17]. Olu P.-Y., Barros C.R., Job N., Chatenet M., “Electrooxidation of NaBH4 in Alkaline Medium on Well-defined Pt Nanoparticles Deposited onto Flat Glassy Carbon Substrate: Evaluation of the Effects of Pt Nanoparticle Size, Inter-Particle Distance, and Loading”, Electrocatalysis, 5, (2014), 288-300.

[18]. Zhang D., Wang G., Yuan Y., Li Y., Jiang S., Wang Y., Ye K., Cao D., Yan P., Cheng K., “Three-dimensional functionalized graphene networks modified Ni foam based gold electrode for sodium borohydride electrooxidation”, International Journal of Hydrogen Energy, 41, (2016), 11593-11598.

[19]. Martins M., Metin Ö., Sevim M., Šljukić B., Sequeira C.A.C., Sener T., Santos D.M.F., “Monodisperse Pd nanoparticles assembled on reduced graphene oxideFe3O4 nanocomposites as electrocatalysts for borohydride fuel cells”, International Journal of Hydrogen Energy, 43, (2018), 10686-10697.

[20]. Song C., Li B., Cheng K., Y K., Zhu K., Cao D., Wang G., “Synthesis and investigation of a high-activity catalyst: Au nanoparticles modified metalic Ti microrods for NaBH4 electrooxidation”, International Journal of Hydrogen Energy, 43, (2018), 3688-3696.

[21]. Lafforgue C., Atkinson R.W., Swider-Lyons K., Chatenet M., “Evaluation of carbon-supported palladium electrocatalysts for the borohydride oxidation reaction in conditions relevant to fuel cell operation”, Electrochimica Acta, 341, (2020), 135971.

[22]. Ajmal S., Bibi I., Majid F., Ata S., Kamran K., Jilani K., Nouren S., Kamal S., Ali A., Iqbal M., “Effect of Fe and Bi doping on LaCoO3 structural, magnetic, electric and catalytic properties”, Journal of Materials Research and Technology, 8, (2019), 4831-4842.

[23]. Bibi I., Hussain S., Majid F., Kamal S., Ata S., Sultan M., Din M.I., Iqbal M., Nazir A., “Structural, dielectric and magnetic studies of perovskite [Gd1− xMxCrO3 (M= La, Co, Bi)] nanoparticles: photocatalytic degradation of dyes”, Zeitschrift für Physikalische Chemie, 233, (2019), 1431-1445.

[24]. Majid F., Malik A., Ata S., Hussain Z., Bibi I., Iqbal M., Rafay M., Rizvi H., “Structural and Optical Properties of Multilayer Heterostructure of CdTe/CdSe Thin Films”, Zeitschrift für Physikalische Chemie, 233, (2019), 1215-1231.

[25]. Majid F., Rauf J., Ata S., Bibi I., Yameen M., M. Iqbal, Hydrothermal Synthesis of Zinc Doped Nickel Ferrites: Evaluation of Structural, Magnetic and Dielectric Properties, Zeitschrift für Physikalische Chemie, 233, (2019), 1411-1430.

[26]. Majid F., Nazir A., Ata S., Bibi I., Mehmood H.S., Malik A., Ali A., Iqbal M.,”Effect of Hydrothermal Reaction Time on Electrical, Structural and Magnetic Properties of Cobalt Ferrite”, Zeitschrift für Physikalische Chemie, (2019).

[27]. Aal R.M.A., Gitru M.A., Essam Z.M., “Novel synthetized near infrared cyanine dyes as sensitizer for dye sensitized solar cells based on nano-TiO2”, Chemistry International, 3, (2017), 358-367.

[28]. Pramanik H., Rathoure A.K., “Electrooxidation study of NaBH4 in a membraneless microfluidic fuel cell with air breathing cathode for portable power application”, International Journal of Hydrogen Energy, 42, (2017), 5340-5350.

[29]. Yang F., Cheng K., Ye K., Wei X., Xiao X., Guo F., Wang G., Cao D., “High performance of Au nanothorns supported on Ni foam substrate as the catalyst for NaBH4 electrooxidation”, Electrochimica Acta, 115, (2014), 311-316.

[30]. Ye K., Ma X., Huang X., Zhang D., Cheng K., Wang G., Cao D., “The optimal design of Co catalyst morphology on a three-dimensional carbon sponge with low cost, inducing better sodium borohydride electrooxidation activity”, RSC Advances, 6, (2016), 41608-41617.

[31]. D. Duan, Yin X., Wang Q., Liu S., Wang Y., “Performance evaluation of borohydride electrooxidation reaction with ternary alloy Au–Ni– Cu/C catalysts”, Journal of Applied Electrochemistry, 48, (2018), 835-847.

[32]. Šljukić B., Milikić J., Santos D.M.F., Sequeira C.A.C., “Carbon-supported Pt0.75M0.25 (M=Ni or Co), electrocatalysts for borohydride oxidation”, Electrochimica Acta, 107, (2013), 577-583.

[33]. Jin W., Liu J., Wang Y., Yao Y., Gu J., Zou Z., “Direct NaBH4–H2O2 fuel cell based on nanoporous gold leaves”, International Journal of Hydrogen Energy, 38, (2013), 10992-10997.

[34]. Ojani R., Raoof J.-b., Valiollahi R., “Pt nanoparticles/graphene paste electrode for sodium borohydride electrooxidation”, Journal of Solid State Electrochemistry, 17, (2013), 217-221.

[35]. Šljukić B., Milikić J., Santos D.M.F., Sequeira C.A.C., Macciò D., Saccone A., “Electrocatalytic performance of Pt–Dy alloys for direct borohydride fuel cells”, Journal of Power Sources, 272, (2014), 335-343.

[36]. Oliveira R.C.P., Milikić J., Daş E., Yurtcan A.B., Santos D.M.F., Šljukić B., “Platinum/polypyrrolecarbon electrocatalysts for direct borohydride-peroxide fuel cells”, Applied Catalysis B: Environmental, 238, (2018), 454-464.

[37]. Pe F.i, Wang Y., Wang X., He P.Y., Liu L., Xu Y., Wang H., “Preparation and Performance of Highly Efficient Au Nanoparticles Electrocatalyst for the Direct Borohydride Fuel Cell”, Fuel Cells, 11, (2011), 595-602.

[38]. Santos D.M.F., Sequeira C.A.C., “Cyclic voltammetry investigation of borohydride oxidation at a gold electrode”, Electrochimica Acta, 55, (2010), 6775- 6781.

[39]. Olu P.-Y., Bonnefont A., Braesch G., Martin V., Savinova E. R., Chatenet M., “Influence of the concentration of borohydride towards hydrogen production and escape for borohydride oxidation reaction on Pt and Au electrodes – experimental and modelling insights”, 2017.

[40]. Yan P., Zhang D., Cheng K., Wang Y., Ye K., Cao D., Wang B., Wang G., Li Q., “Preparation of Au nanoparticles modified TiO2/C core/shell nanowire array and its catalytic performance for NaBH4 oxidation”, Journal of Electroanalytical Chemistry, 745, (2015), 56-60.

[41]. Cheng K., Xu Y., Miao R.R., Yang F., Yin J.L., Wang G.L., Cao D.X., “Pd Modified MmNi50.6Co10.2Mn5.4Al1.2 Alloy as the Catalyst of NaBH4 Electrooxidation”, Fuel Cells, 12, (2012), 869- 875.

[42]. Braesch G., Bonnefont A., Martin V., Savinova E.R., Chatenet M., “Borohydride oxidation reaction mechanisms and poisoning effects on Au, Pt and Pd bulk electrodes: From model (low) to direct borohydride fuel cell operating (high) concentrations”, Electrochimica Acta, 273, (2018), 483-494.

[43]. Cheng K., Jiang J., Kong S., Gao Y., Ye K., Wang G., Zhang W., Cao D., “Pd nanoparticles support on [email protected] coaxial nanowires as a novel 3D electrode for NaBH4 electrooxidation”, International Journal of Hydrogen Energy, 42, (2017), 2943-2951.

[44]. Sanli A.E., Aytaç A., Uysal B.Z., Aksu M.L., “Recovery of NaBH4 from BH3OH− hydrolyzed intermediate on the AgI surface treated with different electrochemical methods”, Catalysis Today, 170, (2011), 120-125.

[45]. Zhang D., Ye K., Cao D., Wang B., Cheng K., Li Y., Wang G., Xu Y., “[email protected]: A novel electrode for NaBH4 oxidation”, Electrochimica Acta, 156, (2015), 102-107.

[46]. Zhang D., Ye K., Cheng K., Cao D., Yin J., Xu Y., Wang G., “High electrocatalytic activity of cobalt– multiwalled carbon nanotubes–cosmetic cotton nanostructures for sodium borohydride electrooxidation”, International Journal of Hydrogen Energy, 39, (2014), 9651-9657.

[47]. Guo S., Sun J., Zhang Z., Sheng A., Gao M., Wang Z., Zhao B., Ding W., “Study of the electrooxidation of borohydride on a directly formed CoB/Ni-foam electrode and its application in membraneless direct borohydride fuel cells”, Journal of Materials Chemistry A, 5, (2017), 15879-15890.

[48]. Simões M., Baranton S., Coutanceau C., “Influence of bismuth on the structure and activity of Pt and Pd nanocatalysts for the direct electrooxidation of NaBH4”, Electrochimica Acta, 56, (2010), 580-591.

[49]. Wang B., Zhang D., Ye K., Cheng K., Cao D., Wang G., Cheng X., “Plastic supported platinum modified nickel electrode and its high electrocatalytic activity for sodium borohydride electrooxidation”, Journal of Energy Chemistry, 24, (2015), 497-502.

[50]. Iotov P.I., Kalcheva S.V., Kanazirski I.A., “On the enhanced electrocatalytic performance of PtAu alloys in borohydride oxidation”, Electrochimica Acta, 108, (2013), 540-546.

[51]. Simões M., Baranton S., Coutanceau C., “Electrooxidation of Sodium Borohydride at Pd, Au, and PdxAu1−x Carbon-Supported Nanocatalysts”, The Journal of Physical Chemistry C, 113, (2009), 13369- 13376.

[52]. Guo M., Cheng Y., Yu Y., Hu J., “Ni-Co nanoparticles immobilized on a 3D Ni foam template as a highly efficient catalyst for borohydride electrooxidation in alkaline medium”, Applied Surface Science, 416, (2017), 439-445.

[53]. Duan D., Liu H., Wang Q., Wang Y., Liu S., “Kinetics of sodium borohydride direct oxidation on carbon supported Cu-Ag bimetallic nanocatalysts”, Electrochimica Acta, 198, (2016), 212-219.

[54]. Caglar A., Ulas B., Cogenli M.S., Yurtcan A.B., Kivrak H., “Synthesis and characterization of Co, Zn, Mn, V modified Pd formic acid fuel cell anode catalysts”, Journal of Electroanalytical Chemistry, 850, (2019), 113402.

[55]. Caglar A., Kivrak H., “Highly active carbon nanotube supported PdAu alloy catalysts for ethanol electrooxidation in alkaline environment”, International Journal of Hydrogen Energy, 44, (2019), 11734-11743.

[56]. Çağlar A., Aldemir A., Kivrak H., “Alcohol electrooxidation study on carbon nanotube supported monometallic, Pt, Bi, and Ru catalysts”, Fullerenes, Nanotubes and Carbon Nanostructures, 26, (2018), 863- 870.

[57]. Navaladian S., Viswanathan B., Varadarajan T.K., Viswanath R.P., “A Rapid Synthesis of Oriented Palladium Nanoparticles by UV Irradiation”, Nanoscale Res Lett, 4, (2008), 181-186.

[58]. I.L.M. SIT, Characterızation of the structure and performance of Ce3+ exchanged lix molecular sieves, Materiali in tehnologije, 52, (2018), 423-428.

[59]. Ulas B., Caglar A., Kivrak H., “Determination of optimum Pd: Ni ratio for Pd x Ni 100‐x/CNT s formic acid electrooxidation catalysts synthesized via sodium borohydride reduction method”, International Journal of Energy Research, 43, (2019), 3436-3445.

[60]. Karuppasamy L., Chen C.-Y., Anandan S., Wu J.J., “Sonochemical fabrication of reduced graphene oxide supported Au nano dendrites for ethanol electrooxidation in alkaline medium”, Catalysis Today, 307, (2018), 308-317.

[61]. Chen S., Xu H., Yan B., Li S., Dai J., Wang C., Shiraishi Y., Du Y., “Highly active electrooxidation of ethylene glycol enabled by pinecone-like Pd–Au–Ag nanocatalysts”, Journal of the Taiwan Institute of Chemical Engineers, 83, (2018), 64-73.

[62]. Xu H., Song P., Yan B., Wang J., Gao F., Zhang Y., Du Y., “Superior ethylene glycol electrocatalysis enabled by Au-decorated PdRu nanopopcorns”, Journal of Electroanalytical Chemistry, 814, (2018), 31-37.

[63]. Zhang J., Zhang D., Cui C., Wang H., Jiao W., Gao J., Liu Y., “A three-dimensional porous Co–P alloy supported on a copper foam as a new catalyst for sodium borohydride electrooxidation”, Dalton Transactions, 48, (2019), 13248-13259.

[64]. Yin X., Wang Q., Duan D., Liu S., Wang Y., “Amorphous NiB alloy decorated by Cu as the anode catalyst for a direct borohydride fuel cell”, International Journal of Hydrogen Energy, 44, (2019), 10971-10981.

Kaynak Göster

  • ISSN: 1694-7398
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2001

325 69

Sayıdaki Diğer Makaleler

Fault analysis and prediction of power distribution networks on 11kV Feeders: A case study of Eleweeran and Poly Road 11kV Feeders, Abeokuta


Carbon nanotube supported direct borohydride fuel cell anode catalysts: the effect of catalyst loading

Hilal Demir KIVRAK, Aykut ÇAĞLAR, Tulin Avcı HANSU, Ömer ŞAHİN

A new approach on the stability of fractional singular systems with time-varying delay


Modelling occupational health and safety risks among unskilled workers in construction industry

Hezekiah Oluwole ADEYEMI, Olatilewa Rapheal ABOLADE, Ajibola Oluwafemi OYEDEJI, Olanrewaju Bilikis OLATUNDE

Real time traffic signal timing approach based on artificial neural network

Ali Tahir KARAŞAHİN, Abdullah Erdal TÜMER

Ferrocene as a leaving group; Unexpected rearrangement reactions for the synthesis of 2,3-diarylnapthoquinones

Nevroz Aslan ERTAS, Arif KIVRAK

Detection of some antioxidant enzyme activities in apricot fruit grown in Van region from Turkey

Mustafa BİLİCİ

The concentration distribution of components and particles in the system: tomato-water-sodium nitrate and assessment of the oxidation-reduction potential at different temperatures


Analysis of Turkish 6/49 lottery results


Stability of the third order rational difference equation

Mehmet Emre ERDOGAN