Palynology of the Kılçak formation (Early Miocene) from Central Anatolia: Implications for palaeoclimate and palaeoenvironment

The palynological analysis of the early Miocene successions of the Kılçak formation (Central Anatoia, Turkey) was carried out in order to reconstruct the palaeovegetation. The pollen spectra indicate a fl ora dominated by Pinus, co-dominance of Cupressaceae in one of the investigated successions, and lower percentages of trees such as Taxodioideae within Cupressaceae, Quercus deciduous type, Carya, Carpinus, Ulmus, Engelhardioideae, Salix, Alnus and Juglans. Herbs are represented by minor amounts of Poaceae, Amaranthaceae/Chenopodiaceae and Asteraceae. This flora indicates the presence of a Taxodium topogenous mire with a nearby riparian vegetation and broadleaved deciduous mixed forests developed in the surrounding distant mountainous areas. δ13C analysis shows that the vegetation was dominated by C3 plants. The Kılçak palynoflora reflects a humid, warm-temperate climate being compatible with the global warm conditions maintained during the early Miocene

___

  • Akkiraz, M. S., Akgün, F., Utescher, T., Bruch, A. A., Mosbrugger, V. 2011. Precipitation gradients during the Miocene in Western and Central Turkey as quantified from pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology, 304 (3–4), 276-290.
  • Akgün, F., Kayseri, M. S., Akkiraz, M. S. 2007. Paleoclimatic evolution and vegetational changes during the Late Oligocene– Miocene period in Western and Central Anatolia (Turkey). Palaeogeography Palaeoclimatology Palaeoecology 253, 56–90.
  • Bender, M. M. 1971. Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry, 10, 1239-1243.
  • Biltekin, D., 2017. Palaeovegetational and Palaeoclimatic Changes During the Early Miocene in Central Taurus, Turkey. Yerbilimleri, 38 (1), 101-114.
  • Bouchal, J. M., Mayda, S., Akgün, F., Grímsson, F., Zetter, R. & Denk, T. 2017. Miocene palynoflora of the Tınaz lignite mine, Muğla, southwest Anatolia: taxonomy, palaeoecology and local vegetation change. Review of Palaeobotany and Palynology, 243: 1–36.
  • Bouchal, J. M., Zetter, R., Grímsson, F., Denk, T. 2016. The middle Miocene palynoflora and palaeoenvironments of Eskihisar (Yatağan basin, south-western Anatolia): a combined LM and SEM investigation. Botanical Journal of the Linnean Society, 182, 14–79.
  • Bruijn, H. De, Fahlbusch, V., Saraç, G., Ünay, E. 1993. Early Miocene rodent faunas from eastern Mediterranean area. Part III. The genera Deperetomys and Cricetodon, with a discussion on the evolutionary history of the Cricetodontini. Proc. Kon. Nederl. Akad. Wetensch., Amsterdam, B 96, 151-216.
  • Bruijn, H. De, Koenigswald, W. Von 1994. Early Miocene rodent faunas from eastern Mediterranean area. Part V. The genus Enginia (Muroidea) with a discussion of the structure of the incisor enamel. Proc. Kon. Nederl. Akad. Wetensch., Amsterdam, B 97, 381-405.
  • Bruijn, H. De, Saraç, G. 1992. Early Miocene rodent faunas from eastern Mediterranean area. Part II. Mirabella (Paracricetodontinae, Muroidea). Proc. Kon. Nederl. Akad. Wetensch., Amsterdam, B 95, 25-40.
  • Chen, L., Chen, Q. 1998. The forest diversity in China. In: Boufford, D.E., Ohba, H. (Eds.), Sino-Japanese flora, its characteristics and diversification. The University of Tokyo Bulletin, 37, Tokyo.
  • Denton, G. H., Karlen, W. 1973. Holocene climatic variations—their pattern and possible cause. Quaternary Research, 3, 155–205.
  • Erdei, B., Hably, L., Kázmér, M., Utescher, T., Bruch, A. A. 2007. Neogene flora and vegetation development of the Pannonian domain in relation to palaeoclimate and palaeogeography. Palaeogeography, Palaeoclimatology, Palaeoecology, 253 (1–2), 115-140.
  • Faegri, K., Iversen, J. 1989. Textbook of Pollen Analysis. Wiley, Chichester, 327p.
  • Fauquette, S., Suc, J.-P., Bertini, A., Popescu, S.-M.,Warny, S., Bachiri Taoufic, N., Perez Villa, M.-F., Chikhi, H., Feddi, N., Subally, D., Clauzon, G., Ferrier, J. 2006. How much did climate force the Messinian salinity crisis? Quantified climatic conditions from pollen records in the Mediterranean region. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 281–301.
  • Figueiral, I., Mosbrugger, V., Rowe, N. P., Ashraf, A. R., Utescher, T., Jones, T. P. 1999. TheMiocene peat-forming vegetation of northwestern Germany: an analysis of wood remains and comparisons with previous palynological interpretations. Review of Paleobotany and Palynology, 104, 239–266.
  • Grimm, E. C. 2005. TILIA and TILIA GRAPH. PC spreadsheet and graphics software for pollen data, llinois State Museum, Springfield.
  • Håkansson, S. 1985. A review of various factors influencing the stable carbon isotope ratio of organic lake sediments by the change from glacial to postglacial environmental conditions. Quaternary Science Reviews, 4, 135 -146.
  • Hoek Ostende, L. W. Van den 1992. Insectivore faunas from the Lower Miocene of Anatolia. Part 1. Erinaceidae. Proc. Kon. Nederl. Akad. Wetensch., Amsterdam, B 95, 437-467.
  • Hoek Ostende, L. W. Van den 1995a. Insectivore faunas from the Lower Miocene of Anatolia. Part 2. Dinosorex (Heterosoricidae). Proc. Kon. Nederl. Akad. Wetensch., Amsterdam, B 98, 1-18.
  • Hoek Ostende, L. W. Van den 1995b. Insectivore faunas from the Lower Miocene of Anatolia. Part 3. Dimylidae. Proc. Kon. Nederl. Akad. Wetensch., Amsterdam, B 98, 19-38.
  • Ivanov, D., Ashraf, A. R., Mosbrugger, V., Palamarev, E. 2002. Palynological evidence for Miocene climate change in the Forecarpathian Basin (Central Paratethys, NW Bulgaria). Palaeogeography, Palaeoclimatology, Palaeoecology, 178, 19–37.
  • Ivanov, D., Utescher, T., Mosbrugger, V., Syabryaj, S., Djordjević-Milutinovic, D., Molchanoff, S. 2011. Miocene vegetation and climate dynamics in Eastern and Central Paratethys (Southeastern Europe). Palaeogeography, Palaeoclimatology, Palaeoecology, 304, 262–275.
  • Ivanov, D., Worobiec, E. 2017. Middle Miocene (Badenian) vegetation and climate dynamics in Bulgaria and Poland based on pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology, 467, 83–94.
  • Jimenez-Moreno, G. 2006. Progressive substitution of a subtropical forest for a temperate one during the middle Miocene climate cooling in Central Europe according to palynological data from cores Tengelic-2 and Hidas-53 (Pannonian Basin, Hungary). Review of Palaeobotany and Palynology, 142, 1–14.
  • Karadenizli, L. Saraç, G., Şen, Ş., Seyitoğlu, G., Antoine, P. O., Kazancı, N., Varol, B., Alçiçek, M. C., Gül, A., Erten, H., Esat, K., Özcan, F., Savaşçı, D., Antoine, A., Filoreau, X., Hervet, S., Bouvrain, G., De Bonis, L., Hakyemez, H. Y. 2004. Çankırı – Çorum havzasının batı ve güney kesiminin memeli fosillere dayalı Oligo-Miyosen biyostratigrafisi ve dolgulama evrimi. Maden Tetkik ve Arama Genel Müdürlüğü Rapor No: 10706, 199 s. Ankara (yayımlanmamış).
  • Kaymakçı, N. 2000. Tectono-stratigraphical evolution of the Çankırı Basin (Central Anatolia, Turkey). Doktora Tezi, Geologica Ultraiectina No. 190., 247 p.
  • Kayseri-Özer, M. S. 2013. Spatial distribution of climatic conditions from the Middle Eocene to Late Miocene based on palynoflora in Central, Eastern and Western Anatolia. Geodinamica Acta, 26 (1-2) 122-157.
  • Kohlman-Adamska, A. 1993. Pollen analysis of the Neogene deposits from the Wyrzysk region, north-western Poland. Acta Paleobotanica, 31 (3), 91–297.
  • Kolcon, I., Sachsenhofer, R. F. 1999. Petrography, palynology, and depositional environments of the early Miocene Oberdorf lignite seam (Styrian Basin,Austria). International Journal of Coal Geology, 41, 275–308.
  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F. 2006. World Map of the Köppen–Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263.
  • Kvacek, Z. 1998. Bilinia: a window on Early Miocene marshland environments. Review of Palaeobotany and Palynology, 101, 111–123.
  • Larsson, L. M., Dybkjær, K., Rasmussen, E. S., Piasecki, S., Utescher, T., Vajda, V. 2011. Miocene climate evolution of northern Europe: A palynological investigation from Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology, 309, Issues 3–4, 161-175.
  • Maden Tetkik ve Arama Genel Müdürlüğü., 2002. 1/500.000 ölçekli Türkiye Jeoloji Haritası, Sinop Paftası. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • Magyar, I., Geary, D. H., Müller, P. 1999. Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europé. Palaeogeography, Palaeoclimatology, Palaeoecology, 147, 151–167.
  • Moore, P., Webb, J., Collinson, M. 1991. Pollen Analysis. Blackwell, Oxford, 205p.
  • Mosbrugger, V., Utescher, T., 1997. The Coexistence Approach — a method for quantitative reconstructions of Tertiary terrestrial paleoclimate data using the plant fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 134, 61–86.
  • Mylecraine, K. A., Kuser, J. E., Smouse, P. E., Zimmerman, G. L. 2004. Geographic allozyme variation in Atlantic white-cedar, Chamaecyparis thyoides (Cupressaceae). Canadian Journal of Forest Research, 34, 2443–2454.
  • Nagy, E. 1992a. A comprehensive study of Neogene sporomorphs in Hungary. Geologica Hungarica, Series Palaeontologica, Fasiculus 53, 379p.
  • Nagy, E. 1992b. Climatic conditions in the Hungarian Neogene on the basis of palynology. Paleontologica I Evolucio, No. 24-25, 455-459.
  • Okay, A., Tüysüz, O., 1999. Tethyan sutures of northern Turkey. In "The Mediterranean Basins: Tertiary extension within the Alpine orogen" (eds. B. Durand, L. Jolivet, F. Horváth and M. Séranne). Geological Society, London, Special Publication, 156, 475-515.
  • Özcan, F. 2003. Kılçak Formasyonunun Çankırı havzası stratigrafisindeki yeri ve tektonik konumu. Yüksek Lisans Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, 43s. Ankara (yayımlanmamış).
  • Popescu, S.-M., 2001. Repetitive changes in Early Pliocene vegetation revealed by high-resolution pollen analysis: revised cyclostratigraphy of southwestern Romania. Review of Palaeobotany and Palynology 120, 181–202.
  • Rich, F. J., Kuehn, D., Davies, T. D. 1982. The paleoecological significance of Ovoidites. Palynology, 6, 19–28.
  • Sadowska, A. 1997. Miocene palynology in the Gliwice Region (Upper Silesia), Poland. Bulletin of the Polish Academy of Sciences, Earth Sciences 45, 203–210.
  • Sickenberg, O., Becker-Platen, J. D., Benda, L., Berg, D., Engesser, B., Gaziry, W., Heissig, K., Hünermann, K. A., Sandaar, P. Y., Schmidt-Kittler, N., Staesche, K., Steffens, P., Tobien, H. 1975. Die Gliederung des höheren Jungtertiärs und Altquartärs in der Türkei nach Vertebraten und ihre Bedeutung für die internationale Neogen-Stratigraphie. Geologisches Jahrbuch B, 15, 1-167.
  • Stable Isotope Ecology Laboratory-University of Georgia. http://siel.uga.edu/stable-isotope-overview. 26.04.2017
  • Stach, E., Mackowsky, M. T., Teichmüller, M., Taylor, G. H., Chandra, D., Teichmüller, R. 1982. Stach’s Textbook of Coal Petrology. Gebrüder Borntraeger, Berlin, 535p.
  • Suc, J.-P. 1984. Origin and evolution of the Mediterraneae vegetation and climate in Europe. Nature, 307, 429–432.
  • Suc J-P., Drivaliari, A. 1991. Transport of bisaccate coniferous fossil pollen grains to coastal sediments: an example from the earliest Pliocene Orb Ria (Languedoc, Southern France). Review of Palaeobotany and Palynology, 70, 247–253.
  • Şen, Ş., Seyitoğlu, G., Karadenizli, L., Kazancı, N., Varol, B., Araz, H. 1998. Mammalian biochronolgy of Neogene deposits and its correlation with the lithostratigraphy in the Çankırı-Çorum basin, central Anatolia, Turkey. Eclogae Geologicae Helvetiae, 91, 307-320.
  • Takahashi, K., Jux, U., 1991. Miocene palynomorphs from lignites of the Soma Basin (West Anatolia, Turkey). Bulletin of Faculty of Liberal Arts, Nagasaki University (Natural Science), vol. 32 (81), pp. 7–165.
  • Thomson, P. W., Pflug, H., 1953. Pollen und Sporen des mitteleuropäischen Tertiärs. Palaeontographica B, 94, 1–138.
  • Thompson, R. S., Anderson, K. H., Bartlein, P.J . 1999. Atlas of relations between climatic parameters and distributions of important trees and shrubs in North America. United States Geological Survey Special Paper 1650/A, 1-269.
  • Traverse, A. 2008. Paleopalynology. Springer, Dordrecht, 813p.
  • Tüysüz, O., ve Dellaloğlu, A.A., 1994, Orta Anadolu’da Çankırı havzası ve çevresinin Erken Tersiyer’deki paleocoğrafik evrimi. Türkiye 10. Petrol Kongresi Bildiriler Kitabı, 56-75.
  • Utescher, T., Erdei, B., François, L., Mosbrugger, V. 2007. Tree diversity in the Miocene forests of Western Eurasia. Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 226–250.
  • Ünay, E. 1994. Early Miocene faunas from eastern Mediterranean area. Part IV. The Gliridae. Proc. Kon. Nederl. Akad. Wetensch., Amsterdam, B 97, 445-490.
  • Valero-Garces, B. L., Delgado-Huertas, A., Navas, A., Machin, J., Gonzalez-Samperiz, P., Kelts, K. 2000. Quaternary palaeohydrological evolution of a playa lake: Salada Mediana, central Ebro Basin, Spain. Sedimentology, 47, 1135-1156.
  • Van Geel, B., Hallewas, D. P., Pals, J. P. 1983. A Late Holocene deposits under the Westfriese Zeedijk near Enkhuizen (Prov.Noord-Holland, The Netherlands): palaeoecological and archaeological aspects. Review of Palaeobotany and Palynology, 38, 269–335.
  • Wick, L. 2000. Vegetational response to climatic changes recorded in Swiss Late Glacial lake sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 159, 231–250.
  • Worobiec, E, 2010. Late Miocene freshwater phytoplankton from Józefina (Poland). Micropaleontology, 56 (6), 517-537.
  • Yavuz-Işık, N. 2007. Pollen analysis of coal-bearing Miocene sedimentary rocks from the Seyitömer Basin (Kütahya), Western Anatolia. Geobios 40, 701–708.
  • Yavuz-Işık, N., Demirci, C. 2009. Miocene spores and pollen from Pelitçik Basin, Turkey–environmental and climatic implications. Comptes Rendus Palevol, 8, 437–446.
  • Yavuz-Işık, N., Tokmakkaya, P., Utescher, T. 2011. Palaeoclimatic and Palaeovegetational data from the early-Middle Miocene of Western Anatolia (Muğla-Eskihisar). 64. Türkiye Jeoloji Kurultayı, Ankara.
  • Yi, S. 1997. Zygnematacean zygospores and other freshwater algae from the Upper Cretaceous of the Yellow Sea Basin, southwest coast of Korea. Cretaceous Research, 18, 515 – 544.