GRAFEN NANO PLAKALARLA TAKVİYE EDİLMİŞ Al-5,5Cu-0,5Mn MATRİSLİ KOMPOZİTLERİN TOZ METALURJİSİ İLE ÜRETİMİ VE KARAKTERİZASYONU

Bu çalışmada, grafen nano plakalar (GNP) ile takviye edilmiş Al-ağ.%5,5 Cu-ağ.%0,5 Mn matrisli kompozitler toz metalurjisi yöntemi ile üretilmiştir. Başlangıç tozlarının 8 saate kadar mekanik alaşımlanması ile üretilen Al-5,5Cu-0,5Mn-xGNP (x: ağ.% 0, 0,5 1 ve 2) kompozit tozları, 650 MPa altında ön şekilldendirilmiş ve takiben 600 °C’de 2 saat Ar atmosferi altında basınçsız olarak sinterlenmiştir. Üretilen Al-5,5Cu-0,5Mn-xGNP kompozit numunelerinin mikroyapısal, mekanik ve korozyon özelliklerinin belirlenmesi için X-ışınları difraksiyonu (XRD), taramalı elektron mikroskobu-enerji dağılım spektrometresi (SEM-EDS), mikrosertlik ve korozyon testleri yapılmıştır. Üretilen Al-5,5Cu-0,5Mn-xGNP kompozitlerinin mikroyapısında Al2Cu intermetalik fazı tespit edilmiş ve mekanik alaşımlanmış numunelerde karbür fazı oluşumuna rastlanmıştır. Optimum mekanik alaşımlama süresi 4 saat olarak belirlenmiş ve bu numunelerde grafen katkısı ile sertlik değerlerinin artarak Al-5,5Cu-0,5Mn-2GNP kompozit numunesi için 123 HV’e ulaştığı belirlenmiştir. Ayrıca, grafen katkısının Al esaslı matrisin korozyon direncini düşürdüğü belirlenmiştir.

Powder Metallurgical Fabrication and Characterization of Graphene Nano Platelets Reinforced Al5.5Cu-0.5Mn Matrix Composites

In this study, graphene nano platelets (GNPs) reinforced Al-5.5wt.%Cu-0.5wt.%Mn matrix composites were produced by the powder metallurgy method. Al-5.5Cu-0.5Mn-xGNP (x: 0, 0,5 1 ve 2 wt.%) composite powders produced by mechanical alloying of the starting powders up to 8 h were precompacted via uniaxial pressing under 650 MPa and subsequently pressurelessly sintered at 600 °C for 2 hours under Ar atmosphere. The microstructural, mechanical and corrosion properties of Al-5.5Cu-0.5Mn-xGNP composites were investigated via X-ray diffractometer (XRD), scanning electron microscope-energy dispersive spectrometer (SEM-EDS), microhardness and corrosion tests, respectively. Al2Cu intermetallic phase was detected in the microstructure of the composites and carbide phase formation was observed in the mechanically alloyed composites. The optimum mechanical alloying duration was determined as 4 hours and it was observed that the hardness of these composites increased by the increasing graphene amount and reached to 123 HV for Al-5.5Cu-0.5Mn-2GNP sample. Moreover, the corrosion resistance of Al-based matrix worsened by the graphene addition.

___

  • Akçamlı, N., Küçükelyas, B., Kaykılarlı, C., Uzunsoy, D., 2019, “Investigation of microstructural, mechanical and corrosion properties of graphene nanoplatelets reinforced Al matrix composites”, Mater Res Express, Vol. 6, No. 11, pp. 115627.
  • Bodunrin, M.O., Alaneme, K.K., Chown, L.H., 2015, “Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics”, J Mater Res Technol, Vol. 4, No. 4, pp. 434-445.
  • Davis, J.R., 1993, ASM Specialty Handbook: Aluminum and Aluminum Alloys (2. Basım), ASM International. Doel, T.J.A., Bowen, P., 1996, “Tensile properties of particulate-reinforced metal matrix composites”, Composites Part A, Vol. 27, No. 8, pp.655-665.
  • Edwards, R.S., Coleman, K.S., 2013, “Graphene synthesis: relationship to applications”, Nanoscale, Vol. 5, No. 1, pp. 38-51.
  • Eisenhauer E.M. and Gan Y.X., 2019, Corrosion behavior of a carbon network/aluminum matrix porous composite in salinated and acidic environments, Chem Eng, Vol. 3, No. 2, pp. 54.
  • Tekoğlu, E., Ağaoğulları, D. Öveçoğlu, M.L., 2020. Characterization investigations of the mechanically alloyed and sequentially milled Al-12.6 wt.% Si eutectic alloy powders, Particul Sci Tech, Vol. 38, No. 1, pp.15-22.
  • Fogagnolo, J.B., Velasco, F., Robert, M.H., Torralba, J.M., 2003, “Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders”, Mater Sci Eng, A, Vol. 342, No. 1-2, pp. 131-143.
  • Hosseini, N., Abbasi, M. H., Karimzadeh, F., Enayati, M. H. 2009, “Structural evolution and grain growth kinetics during isothermal heat treatment of nanostructured Al6061”, Mater Sci Eng, A, 525 (1-2), 107-111.
  • Jafari, M., Enayati, M.H., Abbasi, M.H., Karimzadeh, F., 2009, “Thermal stability and structural changes during heat treatment of nanostructured Al2024 alloy”, J. Alloys Compd., Vol. 478, No.1-2, pp. 260-264.
  • Jones, A.R., 2001, “Mechanical Alloying”, Encyclopedia of Materials: Science and Technology, Editör: Greg, P., Encyclopedia of materials: science and technology, Elsevier BV, 1-5.
  • Kaczmar, J.W., Pietrzak, K., Włosiński, W., 2000, “The production and application of metal matrix composite materials”, J Mater Process Technol, Vol. 106, No. 1–3, pp. 58-67.
  • Kumar, A., Kumar, P., 2015, “A review on the mechanical properties, tribological behavior and the microstructural characterization of Aluminium metal matrix composites (AMMCs)”, Int J Sci Eng Res, Vol. 6, No. 6, 1234-1245.
  • Latief, F.H., Sherif, E.S.M., Almajid, A.A., Junaedi, H., 2011, “Fabrication of exfoliated graphite nanoplatelets-reinforced aluminum composites and evaluating their mechanical properties and corrosion behavior”, J Anal Appl Pyrolysis, Vol. 92, No.2, pp. 485-492.
  • Lawrance, C.A., Suresh Prabhu P., 2015, “Al 6061-TiB2 metal matrix composite synthesized with different reaction holding times by in-situ method”, Int J Compos Mater, Vol. 5, No. 5, pp. 97-101.
  • Lyman T., 1973, Metallography, structures and phase diagrams, Metals handbook, Vol. 8, Metals Park, OH: American Society for Metals.
  • Meng, F., Wang, Z., Zhao, Y., Zhang, D., Zhang, W., 2017, “Microstructures and properties evolution of Al-Cu-Mn alloy with addition of vanadium”, Metals, Vol. 7, No. 1, pp. 10.
  • Pérez-Bustamante, R., Pérez-Bustamante, F., Estrada-Guel, I., Santillán-Rodríguez, C.R., Matutes-Aquino, J.A., Herrera-Ramírez, J.M., Miki-Yoshida, M., Martínez-Sánchez, R., 2011, “Characterization of Al2024-CNTs composites produced by mechanical alloying”, Powder Technol, Vol. 212, No. 3, pp. 390-396.
  • Pérez-Bustamante, R., Pérez-Bustamante, F., Estrada-Guel, I., Licea-Jiménez, L., Miki-Yoshida, M., Martínez-Sánchez, R., 2013, “Effect of milling time and CNT concentration on hardness of CNT/Al2024 composites produced by mechanical alloying”, Mater Charact, Vol. 75, pp. 13-19.
  • Prashantha, H.G., Kumar, M., Xavior, A., 2014, “Graphene reinforced metal matrix composite (GRMMC): A Review”, Procedia Eng, Vol. 97, 1033-1040.
  • Rafiee, M.A., Rafiee, J., Srivastava, I., Wang, Z., Song, H.H., Yu, Z.Z., Koratkar, N., 2010, “Fracture and fatigue in graphene nanocomposites”, Small, Vol. 6, No. 2, pp. 179-183.
  • Saravanan, C., Subramanian, K., Ananda Krishnan, V., Sankara Narayanan, R., 2015, “Effect of particulate reinforced Aluminum metal matrix composite”, Mech Mech Eng, Vol. 19, No. 1, 23-30.
  • Suryanarayana, C. M., 2001, “Mechanical alloying and milling”, Prog Mater Sci, Vol. 46, No. 1-2, pp. 1-184.
  • Varol, T., Çanakçı, A., 2015, Microstructure, electrical conductivity and hardness of multilayer graphene/copper nanocomposites synthesized by flake powder metallurgy, Met Mater Int, Vol. 21, No. 4, 704-712.
  • Woo, K. D., Zhang, D.L., 2004, “Fabrication of Al–7wt%Si–0.4wt%Mg/SiC nanocomposite powders and bulk nanocomposites by high energy ball milling and powder metallurgy”, Curr Appl Phys, Vol. 4, No. 2-4, pp. 175-178.
  • Yazdian, N., Karimzadeh, F., Tavoosi, M., 2014, “Fabrication and precipitation hardening characterization of nanostructure Al7075 alloy”, Indian J Eng Mater Sci, Vol. 21, pp. 30-34.
  • Zhang, W., Lin, B., Zhang, D., Li, Y., 2013, “Microstructures and mechanical properties of squeeze cast Al– 5.0 Cu–0.6 Mn alloys with different Fe content”, Mater Des (1980-2015), Vol. 52, No. 1993, pp. 225-233.
  • Zhang, X., Li, S., Pan, B., Pan, D., Zhou, S., Yang, S., Jia, L. and Kondoh, K., 2018, “A novel strengthening effect of in-situ nano Al2O3w on CNTs reinforced aluminum matrix nanocomposites and the matched strengthening mechanisms”, J Alloys Compd, Vol. 764, pp.279-288.
  • Zhou, F., Lee, J., Lavernia, E.J., 2001, “Grain growth kinetics of a mechanically milled nanocrystalline Al”, Scr Mater, Vol. 44, No. 8-9, pp. 2013-2017.
Konya mühendislik bilimleri dergisi (Online)-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Konya Teknik Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi
Sayıdaki Diğer Makaleler

BETONARME BİR BİNANIN EŞDEĞER DEPREM YÜKÜ YÖNTEMİ İLE DBYBHY 2007 VE TBDY 2018 YÖNETMELİKLERİNE GÖRE ANALİZİ

Mahmud Sami DÖNDÜREN, Şeyda HAVA, Ali Serdar ECEMİŞ

Modern Silah Sistemlerinde Uygulandığında SK-42 ve WGS-84 Koordinat Sistemleri Arasındaki Farklılıklardan Kaynaklanan Hatalar

İlgar MUSAYEV, Magsad GOJAMANOV

DERİN SİNİR AĞLARI VE YENİDEN ÖRNEKLEME METOTLARI İLE RUTİN KAN TESTLERİNE DAYALI COVID-19 TESPİTİ

Mahmut TOKMAK, Ecir Uğur KÜÇÜKSİLLE

Bütünleştirici Analiz Kullanarak Behçet Hastalığında Biyobelirteç Adayları Belirlenmesi

Tuba SEVİMOĞLU

Ekstremum Arama Temelli Hata Tahmini ile Esnek Bağlantılı Robot Kolunun Çıkış Geri Besleme Kontrolü

Selami BEYHAN

BAZI FENOLİK KİRLİLİKLERİN İMİDAZOL TÜREVLİ KALİKS[4]AREN İÇEREN MANYETİK NANOPARTİKÜLLER KULLANARAK SULU ÇÖZELTİLERDEN UZAKLAŞTIRILMASI

Ezgi AKCEYLAN, Begüm TABAKCI, Serkan ERDEMİR, Egemen ÖZÇELİK

SU KAYIP YÖNETİMİNDE İZOLE BÖLGE TASARIMI VE AKTİF KAÇAK KONTROLÜNÜN EKONOMİK ANALİZLERİ İÇİN HESAPLAMA ARACININ GELİŞTİRİLMESİ

Salih YILMAZ, Özgür ÖZDEMİR, Mahmut FIRAT, Abdullah ATEŞ

BETONARME SONLU ELEMAN ANALİZİNDE ALTERNATİF BİR KOHEZİF ÇATLAK MODELİ

Efe SELMAN

GÜNEŞ ENERJİSİ KOLEKTÖRÜ ÜRETİMİNDE KAYNAK BAĞIMLI GÖREV SÜRELERİ İLE PARALEL MONTAJ HATTI DENGELEME

Yakup ATASAGUN, Yakup KARA

MADEN İŞLETMELERİNDE COVID 19 SALGININA KARŞI MÜCADELE VE ALINACAK TEDBİRLER

Niyazi BİLİM, Bilgehan KEKEÇ