SDS Yüzey Aktif Maddesinin Al2O3-Su Bazlı Nanoakışkanların Kararlılığı ve Termofiziksel Özellikleri Üzerine Etkileri

Nanoakışkanlar, yeni potansiyel ısı transfer akışkanları olarak kabul görmektedir; ancak literatürde nanoakışkanların kararlılığı ve termofiziksel özellikleri hakkında tartışmalı sonuçlar bulunmaktadır. Bu deneysel çalışmada, farklı hacim oranlarında alüminyum oksit (Al2O3) (%0,3–1,1) ve farklı ağırlık oranlarında sodyum dodesil sülfat (SDS) yüzey aktif madde (%0,2-0,8) içeren nanoakışkanlar, iki adımlı metot kullanılarak hazırlanmıştır. Elde edilen nanoakışkanların kararlılıkları, sedimantasyon yöntemi, zeta potansiyel ve ortalama boyut analizlerine göre belirlenmiştir. Nanoakışkanların yoğunluğu, viskozitesi ve ısıl iletkenliği 298 K ile 338 K sıcaklık aralığında deneysel olarak ölçülmüştür. Elde edilen sonuçlara göre, %0,2 SDS ile hazırlanan nanoakışkanlar birkaç dakika içerisinde çökmeye başlamıştır. Bunun yanı sıra %0,4 SDS, %0,6 SDS ve %0,8 SDS ile hazırlanan nanoakışkanların partikül konsantrasyonu ile kararlılıklarının değiştiği gözlemlenmiştir. Nanoakışkanların temel akışkana göre bağıl yoğunluk değerlerinin her bir partikül konsantrasyonu için sıcaklıktan bağımsız olduğu bulunmuştur. Nanoakışkanların bağıl viskozitesi sıcaklıkla artarken, farklı SDS ağırlıkları ile hazırlanan nanoakışkanların en yüksek bağıl ısıl iletkenlik değerlerine farklı sıcaklıklarda ulaşılmıştır. Genel olarak, bağıl termal özellikler, partikül konsantrasyonundaki artışla artış eğilimi göstermektedir. Nanoakışkanların kararlılığı ve dispersiyonunun termofiziksel özellikler üzerinde yüksek bir etkiye sahip olduğu gözlemlenmiştir.

SDS SURFACTANT EFFECTS ON STABILITY AND THERMOPHYSICAL PROPERTIES OF Al2O3–WATER BASED NANOFLUIDS

Nanofluids have been considered as new potential heat transfer fluids, but there are controversial results about the stability and thermophysical properties of nanofluids in literature. In this experimental study, nanofluids at different aluminium oxide (Al2O3) volume fractions (0.3–1.1%) and sodium dodecyl sulfate (SDS) surfactant weight fractions (0.2–0.8%) were prepared by utilizing the two-step method. Stability of the obtained nanofluids was determined according to the sedimentation method, zeta potential and average particle size analysis. Density, viscosity and thermal conductivity of the nanofluids were measured experimentally from 298 K to 338 K. According to the results, the nanofluids prepared with 0.2% SDS began to collapse within a few minutes. However, it was observed that the stability of nanofluids prepared with 0.4% SDS, 0.6% SDS, and 0.8% SDS changed with the particle concentration. Besides, relative density values of nanofluids were found to be independent of temperature for each particle concentration. While relative viscosity of nanofluids increased with temperature, the highest relative thermal conductivity values of nanofluids with different weights of SDS were achieved at different temperatures. In general, relative thermal properties tend to increase with an increase in particle concentration. It has been observed that the stability and dispersion of nanofluids have a high effect on thermophysical properties.

___

  • Ali, A. R. I., Salam, B. A., 2020, “Review on nanofluid: preparation, stability, thermophysical properties, heat transfer characteristics and application”, SN Applied Sciences, Vol. 2, pp. 1636.
  • Altun, A., Şara, O. N., 2021, "Thermal Conductivity and Viscosity Correlations in Different Kinds of Aqueous Surfactant Solutions at Atmospheric Pressure as a Function of Temperature", International Journal of Thermophysics, Vol. 42, No. 1, pp. 1–19.
  • Altun, A., Şara, O. N., Şimşek, B., 2021, "A comprehensive statistical approach for determining the effect of two non-ionic surfactants on thermal conductivity and density of Al2O3–water-based nanofluids", Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 626, pp. 127099.
  • Assael, M. J., Chen, C. F., Metaxa, I., Wakeham, W. A., 2004, "Thermal conductivity of suspensions of carbon nanotubes in water", International Journal of Thermophysics, Vol. 25, No. 4, pp. 971–985.
  • Azizian, M. R., Aybar, H. Ş., Okutucu, T., 2009, "Effect of nanoconvection due to Brownian motion on thermal conductivity of nanofluids", Proceedings of the 7th IASME / WSEAS International Conference on Heat Transfer, Thermal Engineering and Environment, HTE ’09, Moscow, Russia, 53–56, 20–22 August 2009.
  • Batchelor, G. K., 1977, "The effect of Brownian motion on the bulk stress in a suspension of spherical particles", Journal of Fluid Mechanics, Vol. 83, No. 1, pp. 97–117.
  • Choudhary, R., Khurana, D., Kumar, A., Subudhi, S., 2017, "Stability analysis of Al2O3/water nanofluids", Journal of Experimental Nanoscience, Vol. 12, No. 1, pp. 140–151.
  • Das, P. K., Islam, N., Santra, A. K., Ganguly, R., 2017, "Experimental investigation of thermophysical properties of Al2O3–water nanofluid: Role of surfactants", Journal of Molecular Liquids, Vol. 237, pp. 304–312.
  • Galioğlu Atıcı, O., 2016, Yüzey aktif maddeler kimyası ve endüstriyel uygulamalar, İTÜ Vakfı, İstanbul.
  • Hwang, Y., Lee, J., Lee, J., Jeong, Y., Cheong, S., Ahn, Y., Kim, S. H., 2008, "Production and dispersion stability of nanoparticles in nanofluids", Powder Technology, Vol. 186, pp. 145–153.
  • Jarahnejad, M., Haghighi, E. B., Saleemi, M., Nikkam, N., Khodabandeh, R., Palm, B., Toprak, M. S., Muhammed, M., 2015, "Experimental investigation on viscosity of water-based Al2O3 and TiO2 nanofluids", Rheologica Acta, Vol. 54, No. 5, pp. 411–422.
  • Jha, J. M., Ravikumar, S. V., Tiara, A. M., Sarkar, I., Pal, S. K., Chakraborty, S., 2015, "Ultrafast cooling of a hot moving steel plate by using alumina nanofluid based air atomized spray impingement", Applied Thermal Engineering, Vol. 75, pp. 738–747.
  • Khairul, M. A., Shah, K., Doroodchi, E., Azizian, R., Moghtaderi, B., 2016, "Effects of surfactant on stability and thermo-physical properties of metal oxide nanofluids", International Journal of Heat and Mass Transfer, Vol. 98, pp. 778–787.
  • Kleinstreuer, C., Feng, Y., 2011, "Experimental and theoretical studies of nanofluid thermal conductivity enhancement: A review", Nanoscale Research Letters, Vol. 6, No. 1.
  • Lee, S. W., Park, S. D., Kang, S., Bang, I. C., Kim, J. H., 2011, "Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications", International Journal of Heat and Mass Transfer, Vol. 54, pp. 433–438.
  • Li, X. F., Zhu, D. S., Wang, X. J., Wang, N., Gao, J. W., Li, H., 2008, "Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids", Thermochimica Acta, Vol. 469, pp. 98–103.
  • Longo, G. A., Zilio, C., 2011, "Experimental measurement of thermophysical properties of oxide-water nano-fluids down to ice-point", Experimental Thermal and Fluid Science, Vol. 35, pp. 1313–1324.
  • Ma, M., Zhai, Y., Yao, P., Li, Y., Wang, H., 2021, "Effect of surfactant on the rheological behavior and thermophysical properties of hybrid nanofluids", Powder Technology, Vol. 379, pp. 373–383.
  • Meibodi, M. E., Vafaie-Sefti, M., Rashidi, A. M., Amrollahi, A., Tabasi, M., Kalal, H. S., 2010, "The role of different parameters on the stability and thermal conductivity of carbon nanotube/water nanofluids", International Communications in Heat and Mass Transfer, Vol. 37, pp. 319–323.
  • Meyer, J. P., Nwosu, P. N., Sharifpur, M., Ntumba, T., 2012, "Parametric analysis of effective viscosity models for nanofluids", ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), Texas, 1149–1157, 9–15 November 2012.
  • Meyer, J. P., Adio, S. A., Sharifpur, M., Nwosu, P. N., 2016, "The Viscosity of Nanofluids: A Review of the Theoretical, Empirical, and Numerical Models", Heat Transfer Engineering, Vol. 37, No. 5, pp. 387–421.
  • Michaelides, E. E., 2013, "Transport properties of nanofluids. A critical review", Journal of Non-Equilibrium Thermodynamics, Vol. 38, No. 1, pp. 1–79
  • Mohajeri, E., Noudeh, G. D., 2012, "Effect of temperature on the critical micelle concentration and micellization thermodynamic of nonionic surfactants: Polyoxyethylene sorbitan fatty acid esters", E-Journal of Chemistry, Vol. 9, No. 4, pp. 2268–2274.
  • Nair, V., Parekh, A. D., Tailor, P. R., 2018, "Water-based Al2O3, CuO and TiO2 nanofluids as secondary fluids for refrigeration systems: a thermal conductivity study", Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 40, No. 5.
  • Pastoriza-Gallego, M. J., Casanova, C., Legido, J. L., Piñeiro, M. M., 2011, "CuO in water nanofluid: Influence of particle size and polydispersity on volumetric behaviour and viscosity", Fluid Phase Equilibria, Vol. 300, pp. 188–196.
  • Rao, B. S., Ravi Babu, S., 2019, "Experimental Investigation on Natural Convection Heat Transfer Augmentation with Vibration Effect", International Research Journal of Engineering and Technology, Vol. 6, No. 8.
  • Sayan, P., Sargut, S. T., Kıran, B., 2009, "Calcium oxalate crystallization in the presence of amino acids, proteins and carboxylic acids", Crystal Research and Technology, Vol. 44, No. 8, pp. 807–817.
  • Schramm, L. L., Stasiuk, E. N., Marangoni, D. G., 2003, "Surfactants and their applications", Annual Reports on the Progress of Chemistry - Section C, Vol. 99, pp. 3–48.
  • Sezer, N., Atieh, M. A., Koç, M., 2019, "A comprehensive review on synthesis, stability, thermophysical properties, and characterization of nanofluids", Powder Technology, Vol. 344, pp. 404–431.
  • Shah, S. N. A., Shahabuddin, S., Sabri, M. F. M., Salleh, M. F. M., Ali, M. A., Hayat, N., Sidik, N. A. C., Samykano, M., Saidur, R., 2020, "Experimental investigation on stability, thermal conductivity and rheological properties of rGO/ethylene glycol based nanofluids", International Journal of Heat and Mass Transfer, Vol. 150.
  • Sharma, A. K., Tiwari, A. K., Dixit, A. R., 2016, "Rheological behaviour of nanofluids: A review", Renewable and Sustainable Energy Reviews, Vol. 53, pp. 779–791.
  • Singh, K., Sharma, S. K., Gupta, S. M., 2020, "Preparation of Long Duration Stable CNT Nanofluid Using SDS", Integrated Ferroelectrics, Vol. 204, No. 1, pp. 11–22.
  • Singh, V., Tyagi, R., 2014, " Unique Micellization and CMC Aspects of Gemini Surfactant: An Overview", Journal of Dispersion Science and Technology, Vol. 35, No. 12, pp. 1774–1792.
  • Suganthi, K. S., Rajan, K. S., 2017, "Metal oxide nanofluids: Review of formulation, thermo-physical properties, mechanisms, and heat transfer performance", Renewable and Sustainable Energy Reviews, Vol. 76, pp. 226–255.
  • Syam Sundar, L., Venkata Ramana, E., Singh, M. K., Sousa, A. C. M., 2014, "Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: An experimental study", International Communications in Heat and Mass Transfer, Vol. 56, pp. 86–95.
  • Vajjha, R. S., Das, D. K., Kulkarni, D. P., 2010, "Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids", International Journal of Heat and Mass Transfer, Vol. 53, pp. 4607–4618.
  • Wang, L., Chen, H., Witharana, S., 2013, "Rheology of Nanofluids: A Review", Recent Patents on Nanotechnology, Vol. 7, No. 3, pp. 232–246.
  • Wang, X., J., Zhu, D. S., Yang, S., 2009, "Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids", Chemical Physics Letters, Vol. 470, pp. 107–111.
  • Wang, X., Xu, X., Choi, S. U. S., 1999, "Thermal conductivity of nanoparticle-fluid mixture", Journal of Thermophysics and Heat Transfer, Vol. 13, No. 4, pp. 474–480.
  • Xia, G., Jiang, H., Liu, R., Zhai, Y., 2014, "Effects of surfactant on the stability and thermal conductivity of Al2O3/de-ionized water nanofluids", International Journal of Thermal Sciences, Vol. 84, pp. 118–124.
  • Zareei, M., Yoozbashizadeh, H., Madaah Hosseini, H. R., 2019. "Investigating the effects of pH, surfactant and ionic strength on the stability of alumina/water nanofluids using DLVO theory", Journal of Thermal Analysis and Calorimetry, Vol. 135, No. 2, pp. 1185–1196.
  • Zhai, Y., Li, L., Wang, J., Li, Z., 2019, "Evaluation of surfactant on stability and thermal performance of Al2O3-ethylene glycol (EG) nanofluids", Powder Technology, Vol. 343, pp. 215–224.
  • Zhang, X., Gu, H., Fujii, M., 2006, "Experimental study on the effective thermal conductivity and thermal diffusivity of nanofluids", International Journal of Thermophysics, Vol. 27, No. 2, pp. 569–580.
Konya Journal of Engineering Sciences-Cover
  • Yayıncı: Konya Teknik Üniversitesi
Sayıdaki Diğer Makaleler

Çift Yönlü Transformatör Kodlayıcı Temsilleriyle Gelişmiş Türkçe Sahte Haber Tahmini

Mehmet BOZUYLA

THEVENİN TEMELLİ GERİLİM KARARLILIK İNDEKSİ KULLANILARAK DAĞITIM SİSTEMLERİNİN YENİDEN YAPILANDIRILMASI

Talha Enes GÜMÜŞ, Selcuk EMİROGLU, Selim MERİÇ, Mustafa TURAN

Deiyonize Su/ Etilen Glikol Karışımı Bazlı Grafen Nano Plaka İçeren Nanoakışkan ile Şarj Edilen Bir Termosifonun Performans Analizi

Kerim MARTİN

GNSS KOD (PSEUDORANGE) ÖLÇÜLERİ İLE TEK NOKTA KONUM BELİRLEME YAZILIMI: KTUN_SPP

Emre AYSO, Muzaffer KAHVECİ

Çift Yüzlü Fotovoltaik Panellerin Farklı Zemin Koşullarında Performansının İncelenmesi

Muharrem Hilmi AKSOY, Murat Kubilay ÇALIK

Jelatin Kullanılarak Sentezlenen Gümüş Nanopartiküller ile Esansiyel Yağların Antibakteriyel, Toprak Solunum Ve Toprak Enzim Aktivitelerinde Sinerjistik Etkisi

Büşra ESİRGENLER, Fatih ERCİ

Arazi Yönetim Paradigması: Küresel Gündem ve Türkiye’deki Durum

Orhan ERCAN

FARKLI EĞİM AÇILARINDA GÜNEŞ KOLLEKTÖRLERİNİN ENERJİ VE EKSERJİ ANALİZİ: ERZİNCAN İLİ ÖRNEĞİ

Muhammet Yasin KABA, Aslıhan KURNUÇ SEYHAN, Pınar CELEN, Ali CELEN

İÇME SUYU DAĞITIM SİSTEMLERİNDE ÖNLENEBİLECEK EN UYGUN SIZINTI HACMİNİN VE ORANININ BELİRLENMESİ

Salih YILMAZ, Mahmut FIRAT

KENTSEL HAVA TAŞIMACILIĞINDA KULLANILACAK DİKEY İNİŞ-KALKIŞ KABİLİYETİNE SAHİP BİR HAVA ARACININ KAVRAMSAL TASARIMI VE MENZİL HESABI

Tolunay DAĞ, Tarık ÜNLER, Engin Hasan ÇOPUR, Uğur ÇAKIN