TRIVARIATE FIBONACCI AND LUCAS POLYNOMIALS

In this article, we study the Trivariate Fibonacci and Lucas poly- nomials. The classical Tribonacci numbers and Tribonacci polynomials are the special cases of the trivariate Fibonacci polynomials. Also, we obtain some properties of the trivariate Fibonacci and Lucas polynomials. Using these properties, we give some results for the Tribonacci numbers and Tribonacci polynomials.

___

  • [1] Alladi, K., Hoggatt, V.E., On Tribonacci Numbers and Related Functions, The Fibonacci Quarterly, 15, 42-45, 1977.
  • [2] Feng, J., More Identities on the Tribonacci Numbers, Ars Combinatoria, 100, 73-78, 2011.
  • [3] Hoggatt, V.E., Bicknell, M., Generalized Fibonacci Polynomials, The Fibonacci Quarterly,11, 457-465, 1973.
  • [4] Koshy, T., Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience Publica- tion, 2001
  • [5] Kuhapatanakul, K., Sukruan, L., The Generalized Tribonacci Numbers with Negative Sub- scripts, Integers 14, 2014.
  • [6] Lin, Pin-Yen., De Moivre-Type Identities for the Tribonacci Numbers, The Fibonacci Quar- terly, 26(2), 131-134, 1988.
  • [7] McCarty, C.P., A Formula for Tribonacci Numbers, The Fibonacci Quarterly, 19, 391-393, 1981.
  • [8] Pethe, S., Some Identities for Tribonacci Sequences, The Fibonacci Quarterly, 26, 144-151, 1988.
  • [9] Ramirez, J. L., Sirvent, V.F., Incomplete Tribonacci Numbers and Polynomials, Journal of Integer Sequences,17, Article 14.4.2, 2014.
  • [10] Spickerman, W.R., Binet's Formula for the Tribonacci Sequence, The Fibonacci Quaeterly, 20(2), 118-120, 1982.
  • [11] Tan, M., Zhang, Y., A Note on Bivariate and Trivariate Fibonacci Polynomials, Southeast Asian Bulletin of Mathematics, 29, 975-990, 2005.