On the Generalization of Opial Type Inequality for Convex Function
In this article, by using new different approach method, we establish some generalization of Opial like inequality for convex mappings.
___
- [1] R.P. Agarwal and P.Y.H. Pang, Opial inequalities with applications in differential and difference equations, Mathematics and Its Applications book
series (MAIA, volume 320), Kluwer Academic Publishers, London, 1995.
- [2] W.S. Cheung, Some new Opial-type inequalities, Mathematika, 37 (1990), 136–142.
- [3] W.S. Cheung, Some generalized Opial-type inequalities, J. Math. Anal. Appl., 162 (1991), 317– 321.
- [4] E.K. Godunova and V.l. Levin, On an inequality of Maroni, (Russian), Mat. Zametki 2(1967), 221-224.
- [5] X. G. He, A short of a generalization on Opial’ s inequailty,Journal of Mathematical Analysis and Applications,182, (1994), 299-300.
- [6] P. Maroni, Sur l’in´egalit´e d’Opial-Beesack, C. R. Acad. Sci. Paris Ser. A-B, 264 (1967), A62–A64.
- [7] Hua L.K., On an inequality of Opial, Sci China., 14(1965), 789-790.
- [8] C. Olech, A simple proof of a certain result of Z. Opial. Ann. Polon. Math. 8 (1960), 61–63.
- [9] Z. Opial, Sur une inegaliti, Ann. Polon. Math. 8 (1960), 29-32.
- [10] B. G. Pachpatte, On Opial-type integral inequalities , J. Math. Anal. Appl. 120 (1986), 547–556.
- [11] B. G. Pachpatte, Some inequalities similar to Opial’s inequality , Demonstratio Math. 26 (1993), 643–647.
- [12] B. G. Pachpatte, A note on some new Opial type integral inequalities, Octogon Math. Mag. 7 (1999), 80–84.
- [13] B. G. Pachpatte, On some inequalities of the Weyl type, An. Stiint. Univ. “Al.I. Cuza” Iasi 40 (1994), 89–95.
- [14] S.H. Saker, M.D. Abdou and I. Kubiaczyk, Opial and Polya type inequalities via convexity, Fasciculi Mathematici, 60(1), 145–159, 2018.
- [15] H. M. Srivastava, K.-L. Tseng, S.-J. Tseng and J.-C. Lo, Some weighted Opial-type inequalities on time scales, Taiwanese J. Math., 14 (2010), 107–122.
- [16] C.-J. Zhao and W.-S. Cheung, On Opial-type integral inequalities and applications. Math. Inequal. Appl. 17 (2014), no. 1, 223–232.
- [17] F. H. Wong, W. C. Lian, S. L. Yu and C. C. Yeh, Some generalizations of Opial’s inequalities on time scales, Taiwanese Journal of Mathematics, Vol. 12,
Number 2, April 2008, Pp. 463–471.