Convexity and Hermite-Hadamard Type Inequality via Non-Newtonian Calculus

In this paper, firstly we research basic definition of convexity in terms of non-Newtonian calculi, i.e. interval, convex set, convexity, etc. Secondly, we deal with the different classes of convexity and generalizations via non-Newtonian calculi. Finally, we reveal the new generalization of the definition of convexity that can reduce many order of convexity and constitute some new Hermite-Hadamard type inequalities for this calculi.

___

  • [1] M. Grossman, R. Katz, Non-Newtonian Calculus, Pigeon Cove (1972), Massachusetts, USA: Lee Press.
  • [2] A. E. Bashirov, E. M. Kurpınar, A. O¨ zyapıcı, Multiplicative calculus and its applications, J. Math. Anal. Appl. 337(2008), 36–48.
  • [3] A.E. Bashirov, S. Norozpour, On an alternative view to complex calculus, Math. Methods. Appl. Sci. 41(2018), 7313–7324.
  • [4] C. T¨urkmen, F. Bas¸ar, Some Basic Results on the Sets of Squences with Geometric Calculus, Commun. Fac. Univ. Ank. Series A1 61(2012), 17–34.
  • [5] A. F. C¸ akmak, F. Bas¸ar, Some New Results on Squence Spaces with respect to Non-Newtonian Calculus, J. Inequal. Appl. 228(2012), 1–17.
  • [6] Z. C¸ akır, Spaces of Continuous and Bounded Functions over the Field of Geometric Complex Numbers J. Inequal. Appl. 363(2013), 1–8.
  • [7] U. Kadak, H. Efe, The Contruction of Hilbert Spaces over the Non-Newtonian Field, Int. J. Anal. 2014(2014), 1–10.
  • [8] Y. G¨urefe, U. Kadak, E. Misirli, A. Kurdi, A New Look at the Classical Squence Spaces by Using Multiplicative Calculus, U. P. B. Sci. Bull. Series A 78(2016), 9–20.
  • [9] U. Kadak, Y. G¨urefe, A Generalization on Weighted Means and Convex Functions with respect to the Non-Newtonian Calculus, Int. J. Anal. 2016(2016), 1–9.
  • [10] A. F. C¸ akmak, F. Bas¸ar, Some sequence spaces and matrix transformations in multiplicative sense, TWMS J. Pure Appl. Math. 6 (1) (2015), 27–37.
  • [11] A. F. C¸ akmak, F. Bas¸ar, Certain spaces of functions over the field of non-Newtonian complex numbers, Abstr. Appl. Anal. 2014, Article ID 236124, 12 pages, 2014. doi:10.1155/2014/236124.
  • [12] A. F. C¸ akmak, F. Bas¸ar, On line and double integrals in the non-Newtonian sense, AIP Conference Proceedings, 1611 (2014), 415–423.
  • [13] S. Tekin, F. Bas¸ar, Certain sequence spaces over the non-Newtonian complex field, Abstr. Appl. Anal. 2013, Article ID 739319, 11 pages, doi: 10.1155/2013/ 739319.
  • [14] C. T¨urkmen, F. Basar, Some basic results on the sets of sequences with geometric calculus, AIP Conference Proceedings 1470 (2012), 95–98.
  • [15] K. Boruah, B. Hazarika, Application of Geometric Calculus in Numerical Analysis and difference sequence spaces, J. Math. Anal. Appl. 449(2)(2017), 1265–1285.
  • [16] K. Boruah, B. Hazarika, G-Calculus, TWMS J. Appl. Eng. Math. 8(1)(2018), 94–105.
  • [17] K. Boruah, B. Hazarika, Bigeometric integral calculus, TWMS J. Appl. Eng. Math. 8(2)(2018), 374–385.
  • [18] E. Unluyol, S. Salas¸, ˙I. ˙Is¸can, Convex functions and some inequalities in terms of the Non-Newtonian Calculus, AIP Publishing: AIP Conf Proc 1833 020043(2017), 1–4.
  • [19] S. S. Dragomir, J. Pe˘cari´c, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21(1995), 335–341.
  • [20] T. Y. Zhang, A. P. Ji, F. Qi, On Integral Inequalities of Hermite-Hadamard Type Inequalities for s-Geometrically Convex Functions, Abstr. Appl. Anal., doi:10.11 55/2012/560586.
  • [21] S. Turhan, ˙I. ˙Is¸can, M. Kunt, Hermite-Hadamard Type Inequalities for MjA convex functions, https://doi.org/10.13140/rg.2.2.14526.28486
  • [22] ˙I. ˙Is¸can, Hermite-Hadamard Type Inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43(2014), 6, 935–942.