Bazı Kalkon Sübstitüe Metaloftalosiyaninlerin Kolinesteraz İnhibitör Etkilerinin İncelenmesi

Bu çalışmada, merkezde Ni(II), Zn(II), Co(II) ve Cu(II) içeren daha önce sentezlenmiş tetra-kalkon sübstitüe metaloftalosiyaninlerin (MPcs) Alzheimer (AD) hastalığına karşı antikolinerjik aktiviteleri incelenmiştir. MPcs'ler, orijinal Ellman'ın kolorimetrik prosedürü kullanılarak asetilkolinesteraz (AChE) ve butirilkolinesteraz (BChE) inhibisyonları açısından değerlendirildi. Bu iki kolinesteraz enzimine karşı tüm bileşikler, AChE'ye karşı 1.243-2.369 μM ve BChE'ye karşı 2.865-3.372 μM arasında değişen IC50 değerleri ile inhibitör etkiler göstermiştir. Dört MPcs arasında CuPc (2), AChE'ye karşı en güçlü inhibitör aktiviteyi göstermiştir. Ayrıca, ZnPcs (3), BChE için en etkili inhibisyonu göstermiştir.

Investigation of Cholinesterase Inhibitor Effects of Some Chalcone Substituted Metallophthalocyanines

In this work, previously synthesized tetra-chalcone-substituted metallophthalocyanines (MPcs) containing Ni(II), Zn(II), Co(II), and Cu(II) in the inner core were investigated anticholinergic activities against Alzheimer's disease (AD). The MPcs were evaluated for their inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) using the original Ellman's colorimetric procedure. Against these two cholinesterase enzymes, all compounds showed inhibitory effects with IC50 values ranging from 1.243-2.369 μM against AChE and 2.865-3.372 μM against BChE. Among the four MPcs, CuPcs (2) showed the strongest inhibitory activity against AChE. ZnPcs (3) also showed the most effective inhibition for BChE.

___

  • Arslan T., Ceylan M. B., Baş H., Biyiklioglu Z. and Senturk M. (2020). Design, synthesis, characterization of peripherally tetra-pyridine-triazole-substituted phthalocyanines and their inhibitory effects on cholinesterases (AChE/BChE) and carbonic anhydrases (hCA I, II and IX), Dalton Transaction, 49, 203-209.
  • Arslan T. (2021). Design, synthesis of novel peripherally tetra-chalcone substituted phthalocyanines and their inhibitory effects on acetylcholinesterase and carbonic anhydrases (hCA I and II), Journal of Organometallic Chemistry, 951, 122021.
  • Almaz, Z., Oztekin, A., Tan, A., & Ozdemir, H. (2021). Biological evaluation and molecular docking studies of 4-aminobenzohydrazide derivatives as cholinesterase inhibitors, Journal of Molecular Structure, 1244, 130918.
  • Barut B., Keleş T., Biyiklioglu Z. and Yalçın C. Ö. (2020). Peripheral or nonperipheral tetra-[4-(9H-carbazol-9-yl) phenoxy] substituted cobalt(II), manganese(III) phthalocyanines: Synthesis, acetylcholinesterase, butyrylcholinesterase, and α-glucosidase inhibitory effects and anticancer activities, Applied Organometallic Chemistry, 35, e6021.
  • Breijyeh Z and Karaman R. (2020). Comprehensive Review on Alzheimer’s Disease:Causes and Treatment, Molecules, 25, 5789.
  • Çakır V. (2020), Functional chalcone-substituted tetrakis -metallophthalocyanines: Synthesis and spectroscopic characterization, Journal of Chemical Research, 44, 148–151.
  • Çakır V. and Arslan T, (2022). Synthesis and biological evaluation of new silicon(IV) phthalocyanines as carbonic anhydrase and cholinesterase inhibitors, Inorganica Chimica Acta, 530, 120678.
  • Ellman GL, Courtney KD, Andres VJr, Featherstone RM. (1961)A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol, 7, 88- 95.
  • Erdogan M., Kilic B., Sagkan R. I., Aksakal F., Ercetin T., Gulcan H. O, and Dogruer D.S. (2021). Design, synthesis and biological evaluation of new benzoxazolone/benzothiazolone derivatives as multi-target agents against Alzheimer’s disease, European Journal of Medicinal Chemistry, 212, 113124.
  • Fu, D-J., Zhang, S-Y., Liu, Y-C., Zhang, L., Liu, J-J., Song, J., Zhao, R-H., Li, F., Sun, H-H., Liu, H-M., and Zhang, Y-B. 2016. Design, synthesis and antiproliferative activity studies of novel dithiocarbamate–chalcone derivates. Bioorganic and Medicinal Chemistry Letters, 26, 3918.
  • Kazancıoğlu E. And Senturk M. (2020). Synthesis of N-phenylsulfonamide derivatives and investigation of some esterase enzymes inhibiting properties, Bioorganic Chemistry, 104, 104279.
  • Keleş T., Bıyıklıoğlu Z., Akkaya D., Özel A and Barut B. (2022) Synthesis and in vitro α-glucosidase and cholinesterases inhibitory actions of watersoluble metallophthalocyanines bearing ({6-[3-(diethylamino)phenoxy]hexyl}oxy groups. Turkish Journal of Chemistry, 46, 786.
  • Lima., J.A., Costa., T.W.R., Fonseca., A.C.C., Amaral., R.F., Nascimento., M.D.S.B., O. Santos-Filho., O.A., Miranda., A.L., Neto., D.C.F.,, Lima., F.R.S., Hamerski., L., and Tinoco., L.W., (2020). Geissoschizoline, a promising alkaloid for Alzheimer’s disease: Inhibition of human cholinesterases, anti-inflammatory effects and molecular docking. Bioorganic Chemistry 104, 104215.
  • Medina W.S.G., dos Santos N.A.G., Curti C., Tedesco A.C., and dos Santos A.C. (2009) Effects of zinc phthalocyanine tetrasulfonate-based photodynamic therapy on rat brain isolated mitochondria, Chemico-Biological Interactions79, 402.
  • Ozten O., Kurt B. Z., Sonmez F, Dogan B, and Durdagi S. (2021). Synthesis, molecular docking and molecular dynamics studies of novel tacrine-carbamate derivatives as potent cholinesterase inhibitors, Bioorganic Chemistry, 115, 105225.
  • Öztürmen B.A., Barut B. and Bıyıklıoglu Z. (2022). Synthesis, characterization, and α-glucosidase,cholinesterases, and tyrosinase inhibitory effects of axialsubstituted silicon and peripheral tetra-substituted copper(II), manganese (III) phthalocyanines. Applied Organometallic Chemistry, 36, e6781.
  • Panek, D., Więckowska, A., Jonczyk, J., Godyn, J., Bajda, M., Wichur, T., Pasieka, A., Knez, D., Pislar, A., Korabecny, J., Soukup, O., Sepsova, V., Sabate, R., Kos, J., Gobec, S. and Malawska, B. (2018) ACS Chemical Neuroscience 9, 1074.
  • Rey B., Keller U., Torres T., Rojo G., Lopez F.A., Nonell S., Martı C., Brasselet S., Ledoux I., and Zyss J. (1998) Synthesis and nonlinear optical, photophysical, and electrochemical properties of subphthalocyanines, Journal of the American Chemical Society, 120, 12808.
  • Rosenberry T. L., Brazzolotto X., Macdonald I. R., Wandhammer M., Trovaslet-Leroy M., Darvesh S, and Nachon F. (2017) Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: A Crystallographic, Kinetic and Calorimetric Study, Molecules, 22, 2098.
  • Shaikha., S., Dhavanb, P., Pavalea, G., Ramanaa, M.M.V., and Jadhavb, B.L. (2020) Design, synthesis and evaluation of pyrazole bearing α-aminophosphonate derivatives as potential acetylcholinesterase inhibitors against Alzheimer’s disease. Bioorganic Chemistry 96, 103589.
  • Srivastava S., Ahmad R., and Khare S. K. (2021). Alzheimer’s disease and its treatment by different approaches: A review, European Journal of Medicinal Chemistry, 216, 113320.
  • Tian T., Weng L., Wang S., Weng X., Zhang L, and Zhou X. (2009). Cationic tetrapyrrolic macromolecules as new acetylcholinesterase inhibitors, Journal of Porphyrins and Phthalocyanines, 13, 893–902.
  • Tosun G., Arslan T., Iskefıyeli Z., Küçük M., Karaoğlu Ş.A., and Yaylı N. (2015). Synthesis and biological evaluation of a new series of 4-alkoxy-2-arylquinoline derivatives as potential antituberculosis agents, Turkish Journal of Chemistry, 39, 850.
  • Yalazan H., Akyüz D., Serdaroglu V., Kahriman N., Koca A. and Kantekin H. (2020). Novel peripheral tetra-substituted phthalocyanines containing methoxylated chalcone group: Synthesis, spectral, electrochemical and spectroelectrochemical properties, Journal of Organometallic Chemistry 912, 121181.