ELECTROCONDUCTIVE POLYAMIDE FIBERS WITH GREEN SYNTHESIZED SILVER NANOPARTICLES

The objective of this research is to study antibacterial and antistatic properties of polyamide yarn which coated silver nanoparticles and carboxymethylstarch (CMS). Silver nanoparticles were synthesized by a green synthesis method and coated onto polyamide (PA) fibers. The presence of nanosilver onto yarns was confirmed by scanning electron microscope (SEM), UV–visible spectra (UV-Vis) and X-ray diffraction (XRD) techniques. The concentration of silver deposited on the composite PA yarns was measured by ICP-OES spectroscopy. Electrical conductivity of composite yarns was measured by four point conductivity measurement technique and was changed from 1.452x10-5 to 2.853x10-3 S/cm.

___

  • Abdel-Halim, E.S., Alanazia, H., & Al-Deyab, S. (2015). Utilization of hydroxypropyl carboxymethyl cellulose in synthesis of silver nanoparticles. International Journal of Biological Macromolecules, 75, 467–473.
  • Abdel-Halim, E.S., & Al-Deyab., S.S. (2011). Utilization of hydroxypropyl cellulose for green and efficient synthesis of silver nanoparticles. Carbohydrate Polymers, 86, 1615– 1622.
  • Ashayer Soltani, R., Hunt, C., & Thomas, O. (2016). Fabrication of highly conductive stretchable textile with silver nanoparticles. Textile Research Journal, 86(10), 1041–1049. Babaahmadi, V., & Montazer, M. (2015). New Route to Synthesis Silver Nanoparticles on Polyamide Fabric Using Stannous Chloride. The Journal of The Textile Institute, 106(9), 970-977.
  • Bhowmick, S., & Koul V. (2016). Assessment of PVA/silver nanocomposite hydrogel patch as antimicrobial dressing scaffold: Synthesis, characterization and biological evaluation. Materials Science and Engineering, 59, 109–119.
  • Dolaz, M, & Akarsu, S. (2018). Synthesis, characterization and application of carboxymethyl potato starch obtained from waste. Cellulose Chemıstry And Technology, 53 (1-2), 35-45.
  • Dong, C., Zhang, X., & Cai, H. (2014). Green synthesis of monodisperse silver nanoparticles using hydroxy propyl methyl cellulose. Journal of Alloys and Compounds, 583, 267–271.
  • El-Rafie, M.H., El-Naggara, M.E., Ramadan, M.A.,. Foudaa, M.M.G., Al-Deyabc S. S., & Hebeish, A. (2011). Environmental synthesis of silver nanoparticles using hydroxypropyl starch and their characterization. Carbohydrate Polymers, 86, 630– 635.
  • El-Shishtawy, R. M., Asiri, A. M., Abdelwahed, N., A. M., &Al-Otaibi, M. M. (2011). In situ production of silver nanoparticle on cotton fabric and its antimicrobial evaluation. Cellulose, 18, 75–82.
  • Elzey, S., & Grassian, V. H. (2010). Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments. Journal of Nanopart Research, 12,1945–1958.
  • Guzmán M, Dille, J, & Godet, S. (2009). Synthesis of silver nanoparticles by chemical reduction method and their antibacterial activity. International Journal of Chemical and Biomolecular Engineering, (2)3, 104-111.
  • Hasan, F., Pervez, N., Talukder, E., Sultana, Z., Mahmud, S., Meraz, M., & Bansal, V., &Genyang, C. 2019. A Novel Coloration of Polyester Fabric through Green Silver Nanoparticles (G-AgNPs@PET). Nanomaterials, 9, 569.
  • Hebeish, A., El-Rafie, M., Sheikh, H., & El-Naggar, E. (2013). Nanostructural Features of Silver Nanoparticles Powder Synthesized through Concurrent Formation of the Nanosized Particles of Both Starch and Silver. Journal of Nanotechnology, Article ID 201057, 10.
  • Hebeish, A., El-Shafei, A., Sharaf, S., & Zaghlou, S., (2011). Novel precursors for green synthesis and application of silver nanoparticles in the realm of cotton finishing, Carbohydrate Polymers 84, 605–613.
  • Holubnycha, V., Pogorielov, M., & Korniienko, V., (2017, September). Antibacterial Activity of the New Copper Nanoparticles and Cu NPs/Chitosan Solution. IEEE 7th International Conference on Nanomaterials: Applications and Properties, Odessa, Ukraine.
  • İlkan, Ö. (2020). Investigation of the technical and physical properties of metal composite 1×1 rib knitted fabrics. Industria Textila, 71(1), 41-49.
  • Kanmani, P., & Taik Lim, S. (2013). Synthesis and characterization of pullulan-mediated silver nanoparticles and its antimicrobial activities. Carbohydrate Polymers, 97, 421– 428.
  • Kardarian, K., (2014). Sintering of nanoscale silver coated textiles, a new approach to attain conductive fabrics for electromagnetic shielding. Materials Chemistry and Physics, 147,815e822.
  • Khalil-Abad, M.S., & Yazdanshenas, M.E. (2010). Superhydrophobic antibacterial cotton textiles. Journal of Colloid and Interface Science, 351, 293–298.
  • Kurt A., & Çelik Y. (2020). Synthesis of Quasi-Spherical Silver Nanoparticles by Chemical Reduction Route Using Different Reducing Agents. Konya Journal of Engineering Sciences, 8(4), 828-838.
  • Lee, J., Kwon, H., Seo, J., Shin, & S., Lee, T. (2015). Conductive Fiber-Based Ultrasensitive Textile Pressure Sensor for Wearable Electronics. Advance Material, 27, 2433–2439.
  • Moazzenchi, B., & Montazer, M. (2019). Click electroless plating of nickel nanoparticles on polyester fabric: Electrical conductivity, magnetic and EMI shielding properties, Colloids and Surfaces, A 571, 110–124.
  • Montazer, M., & Nia, Z.K. (2015). Conductive nylon fabric through in situ synthesis of nano-silver: Preparation and characterization. Materials Science and Engineering, C 56, 341–347.
  • Montes-Hernandez, A. G., Girolamo, M. D., Sarret, G., & Bureau, S., (2021.) In Situ Formation of Silver Nanoparticles (Ag-NPs) onto Textile Fibers. CS Omega, 6, 1316−1327.
  • Nishimura, S., Mott, D., Takagaki, A, Maenosono, S., Ebitani, K. (2011). Role of base in the formation of silver nanoparticles synthesized using sodium acrylate as a dual reducing and encapsulating agent. Chemical Physical, 13, 9335–9343.
  • Osório, I., Igreja, R., Franco, R., & Cortez, J., (2012). Incorporation of silver nanoparticles on textile materials by an aqueous procedure. Materials Letters, 75, 200–203.
  • Paszkiewicz, M., GoBdbiewska, A., Rajski, A., Kowal, E., Sajdak, A., & Zaleska-Medynska A. (2016). The Antibacterial and Antifungal Textile Properties Functionalized by Bimetallic Nanoparticles of Ag/Cu with Different Structures. Journal of Nanomaterials, Article ID 6056980, 13.
  • Perelshtein, I., Applerot, G., Perkas, N., Guibert, G., Mikhailov, S., & Gedanken, A. (2008). Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology, 19, 245705.
  • Pıca, A., Fıca, D., & Guran, C. (2012). In-situ Synthesis of Nano Silver Particles Used in Obtaining of Antimicrobial Film-Forming Materials. Revista Chımıme(Bucharest), 63, 5.
  • Pivec, T., Hribernik, S., Kolar, M., & Kleinschek, K.S. (2017). Environmentally friendly procedure for in-situ coating of regeneratedcellulose fibres with silver nanoparticles. Carbohydrate Polymers, 163, 92–100.
  • Pollini, M., Russo, M., Licciulli, E.A., Sannino, A., & Maffezzoli, E.A. (2009). Characterization of antibacterial silver coated yarns. Journal Material Science, 20, 2361–2366.
  • Puiso, J., Prosycevas, I., & Tamulevičius, S. (2009). Investigation of Silver Nanoparticles Formation Kinetics During Reduction of Silver Nitrate with Sodium Citrate. Materıals Science, 15(1), 1392–1320.
  • Raghavendra, G.M., Jung, J., Kim, D., & Seo, j. (2016). Step-reduced synthesis of starch-silver nanoparticles. International Journal of Biological Macromolecules, 86, 126–128.
  • Raveendran, P., Fu, J., & Wallen, S. L. (2003). Completely“green”synthesis and stabilization of metal nanoparticles. Journal of American Chemical Society, 125, 13940–13941.
  • Ravindra, S., Mohan, Y. M, Reddy, N., & Raju, K.M. (2010). Fabrication of Antibacterial Cotton Fibres Loaded with Silver Nanoparticles via ‘’Green Approach’’. Colloids and surfaces A: Physicochemical and engineering aspects, 367, 31-40.
  • Saad, M. A., Aldalbahia, A., Al-hajjia, A. B.,. Chaudharyb, A. A., Panhuis, M., Ahamada, T., & Alhokbanya, N. (2016). Development of carboxymethyl cellulose-based hydrogel andnanosilver composite as antimicrobial agents for UTI pathogens. Carbohydrate Polymers, 138, 229–236.
  • Sadanand, V., Tian, H., Rajulu, A. V., & Satyanarayana, B. (2017). Antibacterial cotton fabric with in situ generated silver nanoparticles by one-step hydrothermal method, International Journal of Polymer Analysis and Characterization, 22(3), 275-279.
  • Tang, B., Kaur, J., Sun, L., & Wang, X., (2013). Multifunctionalization of cotton through in situ green synthesis of silver nanoparticles. Cellulose, 20, 3053–3065.
  • Textor, T., Fouda, M.M.G., & Mahltig, B. (2010). Deposition of durable thin silver layers onto polyamides employing a heterogeneous Tollens’ reaction. Applied Surface Science, 256, 2337–2342.
  • Wei, Y., Chen, S., Lin, Y., Yuan, X., & Liu, L. (2015). Silver Nanowires Coated on Cotton for Flexible Pressure Sensors. Journal of Materials Chemistry, 4, 935-943.
  • Wu, J., Zheng, Y., Song, W., Luan, J., Wen Zhigu, X., Chen, X., Wang, Q., & Guo, S. (2014). In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydrate Polymers, 102, 762-771.
  • Xue, C. H., Chen, J., Yin, W., Tian Jia, S., & Zhong, Ma J. (2012). Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Applied Surface Science, 258, 2468–2472.
  • Yu, Z., Liu, J., He, H., Wang, Y., Zhao, Y., Lu, Q., Qin, Y., Ke, Y., & Peng, Y. (2021). Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Department of Chemistry and Chemical Engineering. Cellulose, 28, 1827–1842.
  • Zahran, M.K. (2014). Surface modification of cotton fabrics for antibacterial application bycoating with AgNPs–alginate composite. Carbohydrate Polymers, 108, 145–152. URL 1.Carboxy Methyl Starch (CMS). (2022). http://carboxymethyl-starch.com/] / Accessed 03.06.22.
Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • Başlangıç: 1998
  • Yayıncı: Kahramanmaraş Sütçü İmam Üniversitesi
Sayıdaki Diğer Makaleler

ALÇI ESASLI KARIŞIMLARDA MİKRONİZE CAM KÜRECİKLERİNİN DEĞERLENDİRİLMESİ

Orkun DEVREK, Ahmet Hayrullah SEVİNÇ, Muhammed Yasin DURGUN, Yusuf URAS

İKİ BUHARLAŞTIRICILI KARBONDİOKSİT (CO2) - AMONYAK (NH3) KASKAD SOĞUTMA SİSTEMİNİN TERMODİNAMİK ANALİZİ VE OPTİMUM TASARIM PARAMETRELERİNİN BELİRLENMESİ

Muhammet Nasıf KURU, Mehmet Tahir ERDİNÇ

ZAYIF AC SİSTEMLERE BAĞLI VSC-HVDC’NİN VEKTÖREL KONTROLU

Kadir ABACI, Volkan YAMAÇLI, Aykan BÖLÜKBAŞI

KALP YETMEZLİĞİ HASTALIĞININ TAHMİN EDİLMESİNDE SINIFLANDIRICI ALGORİTMALARININ PERFORMANSLARININ DEĞERLENDİRİLMESİ

Cevdet COŞKUN, Fatma KUNCAN

ELBİSTAN BÖLGESİNDEN ÇIKARILAN AGREGALARIN MÜHENDİSLİK ÖZELLİKLERİ VE BETON ÜRETİMİNDE KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI

Ela AVŞAROĞLU, Mustafa EKEN, Emre ESER

CNC MAKİNESİ İLE İŞLENMİŞ LİF LEVHALARIN YÜZEY PÜRÜZLÜLÜĞÜ VE İŞLEM SÜRESİ ÜZERİNE İŞLEME PARAMETRELERİNİN ETKİLERİ

Fevzi DUMANOĞLU, Bekir Cihad BAL

SADEYAĞIN FARKLI BİTKİSEL YAĞLARLA KİMYASAL İNTERESTERİFİKASYONU

Ayşe Burcu AKTAŞ, Büşra Nur OKÇU, Deniz YAMAN, Bilge Başak BAYRAM

KÂGİR BLOK ÜRETİMİNDE FARKLI ORİJİNLİ İKİ POMZANIN PERFORMANSLARI ÜZERİNE KARŞILAŞTIRMALI BİR ANALİZ: TOMARZA VE TATVAN ÖRNEĞİ

Lütfullah GÜNDÜZ, Şevket Onur KALKAN

TERMOGRAVİMETRIK ANALİZ İLE FARKLI KÖMÜRLERİN YANMA PROSESİNİN İNCELENMESİ

Jale NAKTİYOK, Abdulkadir ÖZER

GEOTEKNİK UYGULAMALARDA GEOPOLİMERLERİN KULLANILABİLİRLİĞİNİN İNCELENMESİ, LİTERATÜR ÇALIŞMASI

Muhammet ÇINAR, Büşra ERBAŞI