SIÇANLARDA TRAVMATİK ALT TORASİK OMURİLİK YARALANMASINDA İNSAN KAYNAKLI MEZENKİMAL KÖK HÜCRE TEDAVİSİ VE SONUÇLARINININ DEĞERLENDİRİLMESİ Serhat CÖMERT1, Nur ALTINÖRS1, Serdar KABATAŞ2, Erkin SÖNMEZ1, Fikret ŞAHİNTÜRK1, Özlem ÖZEN3, İffet Feride ŞAHİN1, Ersin ÖĞÜŞ1, Erdal KARAÖZ1

Travmatik omurilik yaralanmasında yüksek morbidite ve mortaliteye sebep olan önemli bir sağlık sorunudur. Travma sonrası ortaya çıkan fonksiyon kaybı, hem birincil yaralanmaya hem de birincil yaralanmanın tetiklediği ikincil yaralanma mekanizmalarına bağlıdır. son yıllarda TOY'ında kök hücre kullanımının umut verici sonuçlar vermiştir. TOIY'nda farklı kaynağı olan nöronal progenitör hücreler, nöronal kök hücreler, embriyonik kök hücreler veya mezenkimal kök hücreler kullanılamkatadır. Biz çalışmamızda ratlarda travmatik alt torasik yaralanmasında insan kaynaklı MKH tedavisi ve sonuçlarını inceledik

HUMAN MESENCHYMAL STEM CELL THERAPY IN THORACIC SPINAL CORD INJURY AND EVALUATION OF THE RESULTS-AN EXPERIMENTAL STUDY IN RATS

Objective: The aim of this study is to investigate the hyper-acute and acute effects of mesenchymal stem cell (MSC) therapy on traumatic spinal cord injury (SCI) in an experimental animal model. Materials and Methods: The study was carried out on 60 male Sprague-Dawley rats weighing 400- 500 grams. The subjects were separated into six groups. In-group 1, only thoracic 10 laminectomy was performed. In-group 2, trauma was applied to the spinal cord by using modified Allen trauma model after T10 laminectomy. In group 3, T 10 laminectomy and spinal cord injury was immediately followed by injection of 0.9 % 10 NaCl. In group-4 “1.1- Dioctadecyl3.3.3´.3´-tetramethyllindocarbocyanine” labeled MSC derived from male human bone marrow was implanted to injury site immediately after spinal injury. In group-5, the MSC was implanted nine hours after spinal injury. In the last group 0.9 % NaCl was administered nine hours after T 10 laminectomy and spinal injury at this segment. All groups were sacrificed at the end of four weeks. The neurologic status was checked at Days 1,7,14,21 and 28 using BBB (Basso-Beattie, Bresnahan) locomotor rating scale and inclined plane values. Hematoxylin eosin, and Masson trichome staining were used to assess the degree of inflammation and fibrosis. In order to confirm the Y chromosome signal content of the cells, Y-18 chromosome specific centromere probe was used. Results: Our results showed that MSC therapy has the potential of reducing the degree of inflammation and contributing to functional improvement following SCI. There was statistically significant difference between the hyperacute and nine hours delayed treatment groups. Conclusion: The results of this research is in agreement with the findings of previously published studies indicating the neuroprotective nature of MSC

___

1. Allen AR: Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column. Preliminary report. JAMA 1911; 57: 877-880.

2. Beril GH, Solaroglu I; Okutan O, Cimen B, Kaptanoglu E, Palaoglu S. Metaprolol treatment decreases tissue myeloperoxidase activity after spinal cord injury in rats. J Clin Neurosci 2007; 14(2): 138-142.

3. Bhanot Y, Rao S, Ghosh D, Balaraju S, Radhika CR, Satish Kumar KV. Autologous mesenchymal stem cells in chronic spinal cord injury. Br J Neurosurg 2011; 25(4): 516-522.

4. Canesi M, Giardano R, Lazzari L, Isalberti M, Isaias IU, Benti R. Finding a new therapeutic approach for no-option Parkinsonisms:mesenchymal stromal cells for progressive supranuclear palsy. J Transl Med 2016; 14(1): 127.

5. Chang K-A, Lee J-H, Suh Y-H. Therapeutic potential of human adipose-derived stem cells in neurologic disorders. J Pharmacol Sci 2014; 126: 293-301.

6. Chotivichit A, Ruangchainikom M, Chiewwit P, Wongkajornsilp A, Sujirattanawimol K. Chronic spinal cord injury treated with transplanted autologous bone marrow-derived mesenchymal stem cell tracked by magnetic resonance imaging: a case report. J Med Case Reports 2015; 9: 79.

7. Connick P, Kolappan M, Patani R, Scott MA, Crawley C, He XL. The mesenchymal stem cells in multiple sclerosis (MSCIMS) trial protocol and baseline cohort characteristics:an open-label pre-test:post-test study with blinded outcome assessments. Trials 2011; 12: 62.

8. Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet 2012; 11: 150-156.

9. Dasari VR, Veeravalli KK, Dinh DH. Mesenchymal stem cells in the treatment of spinal cord injuries: A review. World J Stem Cells 2014; 6: 120-133.

10. Fehlings MG, Vaccaro A, Wilson JR. Early versus delayed decompression for traumatic cervical spinal cord injury: Results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS One 2012; 7(2): e32037.

11. Fehlings MG, Baptiste DC. Current status of clinical trials for acute spinal cord injury. Injury 2005; 36 Suppl 2B: 113-122.

12. Gilbert RR. The Foundation for Spinal cord Injury Prevention, Care&Cure (FSCIPCC) novenber 25,2009 Avabile at: http://www.fscip.org/spinal cord injury facts. 13. Goel A. Stem cell therapy in spinal cord injury: Hollow promise or promising science. J Craniovertebr Junction Spine 2016; 7(2): 121-126.

14. Hawryluk GW; Rowland J, Kwon BK, Fehlings MG. Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury. Neurosurg Focus 2008; 25(5): E14.

15. Kaptanoğlu E, Caner HH; Surucu HS, Akbiyik F. Effect of mexiletine on lipid peroxidation and early ultrastructural findings in experimental spinal cord injury. J Neurosurg 1999; 91(2-Suppl.): 200-204.

16. Kaptanoglu E, Beskonakli E; Solaroglu I, Kilinc A, Taskin Y. Magnesium sulfate treatment in experimental spinal cord injury: emphasis on vascular changes and early clinical results. Neurosurg Rev 2003; 26(4): 283-287.

17. Kaptanoglu E, Caner H, Solaroglu I, Kilinc K. Mexiletine treatment-induced inhibition of caspase-3 activation and improvement of behavioral recovery after spinal cord injury. J Neurosurg Spine 2005; 3(1): 53-56.

18. Kaptanoglu E, Solaroglu I, Surucu HS; Akbiyik F, Beskonakli E: Blockade of sodium channels by phenytoin protects ultrastructure and attenuates lipid peroxidation in experimental spinal cord injury. Acta Neurochir (Wien) 2005; 147: 405-412.

19. Kim Y, Jo H, Kim WH, Kweon O-K. Antioxidant and anti-inflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury. Stem Cell Res Ther 2015; 6: 229.

20. Kishk NA, Gabr H, Hamdy S. Case control series of intratechal autologous bone marrow mesenchymal stem cell therapy for chronic spinal injury. Neurohabil Neural Repair 2010; 24(8): 702-708.

21. Kumar AA, Kumar SR, Narayanan , Arul K, Baskaran M. Autologous bone marrow derived mononuclear cell therapy for spinal cord injury. A phase I/II clinical safety and primary efficacy data. Exp Clin Transplant 2009; 7(4): 241-248.

22. Lifshutz J, Colohan A: A brief history of therapy for traumatic spinal cord injury. Neurosurg Focus 2004; 16(1): E5.

23. Morales II, Toscano-Tejeida D, Ibarra A. Non pharmacological strategies to promoto spinal cord regeneration: a view on some individual and combined approaches. Curr Phar Des 2016; 22(6): 720-727.

24. Mothe AJ, Tator CH. Advances in stem cell therapy for spinal cord injury. J Clin Invest. 2012; 122: 3824-3834.

25. Neirinckx V, Agirman G, Coste C, Marquet A, Dion V, Rogister B, Franzen R, Wislet S. Adult bone marrow mesenchymal and neural crest stem cells are chemoattractive and accelerate motor recovery in a mouse model of spinal cord injury. Stem Cell Res Ther 2015; 6: 211.

26. Oh SK, Choi KH, Yoo JY, Kim DYK, Kim SJ, Jeon SR. A phase III clinical trial showing limited efficacy of autologous mesenchymal stem cell therapy for spinal cord injury. Neurosurgery 2016; 78: 436-447.

27. Pal R,Venkataramana ,NK, Bansal A. Ex vivo-expanded autologous bone marrow-derived mononuclear cell therapy for spinal cord injury/paraplegia. A pilot clinical study. Cytotherapy 2009; 11(7): 897-911.

28. Riecke J, Johns KM, Cai C, Vahidy FS, Parsha K, FurrStimming E. A meta-analysis of mesenchymal stem cells in animal models of Parkinson’s disease. Stem Cells Dev 2015; 24(18): 2082-2090.

29. Sandner B, Prang P, Rivera FJ, Aigner L, Blesch A, Weidner N. Neural stem cells for spinal cord repair. Cell Tissue Res 2012; 349(1): 349-362.

30. Schroeder GD, Kepler CK, Vaccaro AR. The Use of Cell Transplantation in Spinal Cord Injuries. J Am Acad Orthop Surg 2016; 24(4): 266-275.

31. Schwerk A, Altschüler J, Roch M, Gossen M, Winter C, Berg J. Adipose-derived human mesenchymal stem cells induce long-term neurogenic and anti-inflammatory effects and improve cognitive but not motor performance in a rat model of Parkinson’s disease. Regen Med 2015; 10(4): 431-436.

32. Schwab ME, Bartholdi D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev 1996; 76(2): 319-370.

33. Solaroglu I,Kaptanoglu E, Okutan O, Beskonakli E, Attar A, Kilinc K. Magnesium sulfate treatment decreases caspase-3 activity after experimental spinal cord injury in rats. Surg Neurol 2005; 64 (Suppl.-2): S17-21.

34. Tator CH. Review of experimental spinal cord injury with emphasis on the local and sysytemic circulatory effects. Neurochirurgie 1991; 37(5): 291-302.

35. Thuret S, Moon LD, Gage FH. Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 2006; 7: 628- 643.

36. Wong RS. Mesenchymal stem cells: Angels or demons? J Biomed Biotechnol 2011; 2011:459510.

37. Yamout B, Hourani R, Salti H, Barada W, El-Hajj T, Al-Koutoubi A. Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: A pilot study. J Neuroimmun 2010; 227: 185-189.

38. Yoon SH, Shim YS, Park YH. Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial. Stem Cells 2007; 25(8): 2066-2073.

___

Journal of Turkish Spinal Surgery
  • ISSN: 2147-5903
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1989
  • Yayıncı: Galenos Yayınevi

12.6b8.6b

Sayıdaki Diğer Makaleler

SERVİKAL LONGİTUDİNAL LİGAMAN OSSİFİKASYONU İÇİN AÇIK KAPI LAMİNOPLASTİNİN GEÇ SONUÇLARI

Çetin AKYOL, Uyğur ER, Serkan ŞİMŞEK, Murad BAVBEK

SONLU ELEMENT ANALİZİ KULLANILARAK TİTANYUM VİDA POLYESTER BAND KELEPÇE YÖNTEMI (LOTUS) VE RİJİD TİTANYUM TRANSVERS BAĞLAYICI SİSTEMİN KARŞILAŞTIRILMASI

Birol ERKAL, Can YALDIZ, Mete KARATAY, Haydar ÇELİK, Deniz KARABULUT, Iman ZAFARPARANDAH, Onur YAMAN, İHSAN SOLAROĞLU, ALİ FAHİR ÖZER

BALLOON KYPHOPLASTY IN OSTEOPOROTIC PATIENTS WITH SPONTANEOUS VERTEBRAL COMPRESSION FRACTURES

Emre DEMİRÇAY, Atilla KIRCELLI

PARASPİNAL KASLARA BOTULİNUM TOKSİN-A ENJEKSİYONU İLE İDİOPATİK BENZERİ SKOLYOZ ELDE EDİLEBİLİR Mİ? RATLARDA İN VİVO ÇALIŞMA

KERİM SARIYILMAZ, Okan OZKUNT, MURAT AKSU, HALİL CAN GEMALMAZ, Mustafa SUNGUR, Alauddin KOCHAİ, Fatih DİKİCİ

SIÇANLARDA TRAVMATİK ALT TORASİK OMURİLİK YARALANMASINDA İNSAN KAYNAKLI MEZENKİMAL KÖK HÜCRE TEDAVİSİ VE SONUÇLARINININ DEĞERLENDİRİLMESİ Serhat CÖMERT1, Nur ALTINÖRS1, Serdar KABATAŞ2, Erkin SÖNMEZ1, Fikret ŞAHİNTÜRK1, Özlem ÖZEN3, İffet Feride ŞAHİN1, Ersin ÖĞÜŞ1, Erdal KARAÖZ1

Serhat CÖMERT, Nur ALTINÖRS, SERDAR KABATAŞ, ERKİN SÖNMEZ, Fikret SAHINTURK, Özlem ÖZEN, FERİDE İFFET ŞAHİN, ERSİN ÖĞÜŞ, ERDAL KARAÖZ

COMPARISON OF PREOPERATIVE AND POSTOPERATIVE CERVICAL SAGITTAL PARAMETERS IN PATIENTS WITH CERVICAL DEGENERATIVE DISEASE

Sadik Ahmet UYANIK, BİRNUR YILMAZ, HALİME ÇEVİK, Fatih YAKAR, Burçak GÜMÜŞ

THE MANAGEMENT OF THE BLOOD TRANSFUSION IN SPINAL SURGERY

Hikmet Özer SEVAL, Nurdönüş CANDAN, Mesut ŞENER, Selim CANDAN

PROF. UFUK AYDINLI, M.D.

İ. Teoman BENLİ

PRIMARY FEMORAL NERVE ENTRAPMENT: A CASE REPORT

Sevda Lafçı FAHRIOGLU, Doğa GÜRKANLAR, Uyğur ER

İDYOPATİK SKOLYOZ TANILI HASTALARDA SOLUNUM FONKSİYONLARI

Melahat BEKİR, Taha Bahadır ÜSKÜL