Inhibition of DNase I Enzyme with Nickel(II) Triphenylphosphine Complexes Incorporating Tridentate Schiff Base Ligands in Vitro

The nickel(II) complexes containing 3-methoxy-salicylaldehyde-N4-R thiosemicarbazones (R:-H2,-propyl)with triphenylphosphine coligands have been synthesized. The structure of Ni(II)-centered metal complex was approved by elemental analysis and melting point. The solid-state structure of complex 2 bearing PPh3 as co-ligand was clarified by single crystal X-ray crystallography, which revealed square planar geometry around Ni(II) ion. Thiosemicarbazone ligands are coordinated by ONS mode to nickel(II). The potential of these complexes to inhibit the DNase I enzyme, which uses DNA as a substrate, was investigated in vitro. The results revealed that the compounds inhibited the DNase enzyme in directly and/or indirectly (by masking of DNA molecules) at ≥0.1 µg/ml concentrations in vitro.

___

  • 1. Lobana TS, Kumari P, Hundal G, Butcher RJ. Metal derivatives of N1-substituted thiosemicarbazones with divalent metal ions (Ni, Cu): Synthesis and structures. Polyhedron. 2010;29(3):1130-36.
  • 2. Padhye S, Kauffman GB. Transition Metal Complexes of Semicarbazones and Thiosemicarbazones. Coord. Chem. Rev.1985;63:127-60.
  • 3. Jiang ZG, Lebowitz MS, Ghanbari HA. Neuroprotective activity of 3 aminopyridine-2-carboxaldehydethiosemicarbazone (PAN-811), a cancer therapeutic agent. CNS Drug Rev. 2006;12(1):77-90.
  • 4. Güveli S, Kılıç-Cıkla I, Ülküseven B, Yavuz M, Bal-Demirci T. 5-Methyl-2-hydroxy-acetophenone-S-methyl-thiosemicarbazone and its nickel-PPh3 complex. Synthesis, characterization, and DFT calculations. J. Mol. Struct. 2018;1173:366-74.
  • 5. Ekennia AC, Onwudiwe DC, Ume C, Ebenso EE. Mixed ligand complexes of N-Methyl-N-phenyl dithiocarbamate: Synthesis, characterisation, antifungal activity, and solvent extraction studies of the ligand. Bioinorgan. Chem. Appl. 2015;2015:1-10.
  • 6. Güveli Ş, Bal-Demirci T, Ülküseven B, Özdemir N. Supramolecular nickel complex based on thiosemicarbazone. Synthesis, transfer hydrogenation and unexpected thermal behavior. Polyhedron. 2016;110: 188-96.
  • 7. Güveli S, Turan K, Ülküseven B. Nickel(II)-PPh3 complexes with ONS and ONN chelating thiosemicarbazones: synthesis and inhibition potential on influenza A viruses. Turk. J. Chem. 2018;42;371-84.
  • 8. Pahontu E, Fala V, Gulea A, Poirier D, Tapcov V, Rosu T. Synthesis and characterization of some new Cu(II), Ni(II) and Zn(II) complexes with salicylidene thiosemicarbazones: antibacterial, antifungal and in vitro antileukemia activity. Molecules. 2013;18(8):8812-36.
  • 9. Belicchi Ferrari M, Bisceglie F, Pelosi G, Sassi M, Tarasconi P, Cornia M, Capacchi S, Albertini R, Pinelli S. Synthesis, characterization and X-ray structures of new antiproliferative and proapoptotic natural aldehyde thiosemicarbazones and their nickel(II) and copper(II) complexes. J. Inorg. Biochem. 2002;90(3-4):113-26.
  • 10. Bal Demirci T, Congur G, Erdem A, Erdem-Kuruca S, Ozdemir N, Akgun-Dar K, et al. Iron(III) and nickel(II) complexes as potential anticancer agents: synthesis, physicochemical and structural properties, cytotoxic activity and DNA interactions. New J. Chem. 2015;39(7):5643-53.
  • 11. Umadevi C, Kalaivani P, Puschmann H, Murugan S, Mohana PS, Prabhakaran R. Substitutional impact on biological activity of new water soluble Ni(II) complexes: Preparation, spectral characterization, X-ray crystallography, DNA/protein binding, antibacterial activity and in vitro cytotoxicity. Journal of Photochemistry & Photobiology, B: Biology. 2017;167:45–57.
  • 12. Kalaivani P, Saranya S, Poornima P, Prabhakaran R, Dallemer F, Vijaya Padma V, Natarajan K. Biological evaluation of new nickel(II) metallates: Synthesis, DNA/protein binding and mitochondrial mediated apoptosis in human lung cancer cells (A549) via ROS hypergeneration and depletion of cellular antioxidant pool. Eur. J. Med. Chem. 2014;82:584-599.
  • 13. Prabhakaran R, Sivasamy R, Angayarkanni J, Huang R, Kalaivani P, Karvembu R, Dallemer F, Natarajan K. Topoisomerase II inhibition activity of new square planar Ni(II) complexes containing N-substituted thiosemicarbazones: Synthesis, spectroscopy, X-ray crystallography and electrochemical characterization. Inorg. Chim. Acta. 2011;374(1):647-653.
  • 14. Nadano D, Yasuda T, and Kishi K. Measurement of Deoxyribonuclease I Activity in Human Tissues and Body Fluids by a Single Radial Enzyme-Diffusion Method. Clin. Chem. 1993;39(3):448-52.
  • 15. Lazarides E, Lindberg U. Actin is the naturally occurring inhibitor of deoxyribonuclease I. Proc. Natl. Acad. Sci. U.S.A. 1974;71(6):4742-46.
  • 16. Baranovskii AG, Buneva VN, Nevinsky GA. Human deoxyribonucleases. Biochem. Mosc. 2004;69(6):587-601.
  • 17. Kolarevic A, Yancheva D, Kocic G, Smelcerovic A. Deoxyribonuclease inhibitors. European Journal of Medicinal Chemistry. 2014;88:101-11.
  • 18. Sheldrick G. SHELXS-97, Program for Crystal Structure Solution, Univ. Göttingen, Germany. 1997.
  • 19. Sheldrick GM SHELXL2014/1 Programs for the Solution and Refinement of Crystal Structures. University of Göttingen. 2014.
  • 20. Sheldrick GM. A short history of SHELX. Acta Crystallographica Section A Foundations of Crystallography. 2008;64(1):112–22.
  • 21. Sheldrick GM. University of Göttingen, Germany. 1996.
  • 22. Saint P. Bruker AXS Inc., Madison, Wisconsin, USA. 2012.
  • 23. Çağlayan E, Turan K. The effects of DNA methyl transferases on antiaging klotho gene expression. Turk. J. Biol. 2016;40(4):797-806.