Synthesis of nitrogen and oxygen containing heterocyclic compounds using nano catalyst: A review

In organic synthesis, nanocatalysts play a significant role. Nitrogen- and oxygen-containing based heterocyclic atoms are the substantial and essential primary units available in different organically dynamic characteristic items, industrial and pharmaceutical, and agrochemicals. Nanoparticles (NPs) or nanoclusters (NCs) have high synergist action; the maintainable and financial advantages of the convention are the exceptional returns of items, short response time, primary stir-up method, and utilization of a non-poisonous and reusable impetus the response. The current review looks at the various forms of nanocatalysts used to form heterocyclic compound synthesis and some other important ring functionalization.

___

  • 1. Weinstein DS, Gong H, Doweyko AM, Cunningham M, Habte S, Wang JH, et al. Azaxanthene Based Selective Glucocorticoid Receptor Modulators: Design, Synthesis, and Pharmacological Evaluation of ( S )-4-(5-(1-((1,3,4-Thiadiazol-2-yl)amino)-2-methyl-1-oxopropan-2-yl)-5 H -chromeno[2,3- b ]pyridin-2-yl)-2-fluoro- N , N -dimethylbenzamide (BMS-776532) and Its Methylene Homologue (BMS-791826). Journal of Medicinal Chemistry. 2011;54(20):7318–33. DOI: https://doi.org/10.1021/jm200879j.
  • 2. Evdokimov NM, Kireev AS, Yakovenko AA, Antipin MYu, Magedov IV, Kornienko A. One-Step Synthesis of Heterocyclic Privileged Medicinal Scaffolds by a Multicomponent Reaction of Malononitrile with Aldehydes and Thiols. The Journal of Organic Chemistry. 2007;72(9):3443–53. DOI: https://doi.org/10.1021/jo070114u.
  • 3. Gupta S, Khurana JM. An efficient approach for the synthesis of 5-hydroxy-chromeno[2,3-b]pyridines under catalyst and solvent free conditions. Green Chemistry. 2017;19(17):4153–6. DOI: https://doi.org/10.1039/C7GC01463E.
  • 4. El-Saghier AMM, Naili MB, Rammash BKh, Saleh NA, Kreddan KM. Synthesis and antibacterial activity of some new fused chromenes. Arkivoc. 2007 Nov 12;2007(16):83–91. DOI: https://doi.org/10.3998/ark.5550190.0008.g09.
  • 5. Ghorab M, Al-Said M, Nissan Y. Dapson in Heterocyclic Chemistry Part VI: Synthesis and Molecular Docking of Some Novel Sulfonebiscompounds of Expected Anticancer Activity. Arzneimittelforschung. 2012;62(11):497–507. DOI: https://doi.org/10.1055/s-0032-1323660.
  • 6. Mukhopadhyay S, Lasri J, Guedes da Silva MFC, Januário Charmier MA, Pombeiro AJL. Activation of C–CN bond of propionitrile: An alternative route to the syntheses of 5-substituted-1H-tetrazoles and dicyano-platinum(II) species. Polyhedron. 2008;27(13):2883–8. DOI: https://doi.org/10.1016/j.poly.2008.06.031.
  • 7. Singh RP, Verma RD, Meshri DT, Shreeve JM. Energetic Nitrogen-Rich Salts and Ionic Liquids. Angewandte Chemie International Edition. 2006;45(22):3584–601. DOI: https://doi.org/10.1002/anie.200504236.
  • 8. Li J, Ren T, Liu H, Wang D, Liu W. The tribological study of a tetrazole derivative as additive in liquid paraffin. Wear. 2000;246(1–2):130–3. DOI: https://doi.org/10.1016/S0043-1648(00)00500-7.
  • 9. Pakdel S, Akhlaghinia B, Mohammadinezhad A. Fe3O4@Boehmite-NH2-CoII NPs: An Environment Friendly Nanocatalyst for Solvent Free Synthesis of Coumarin Derivatives Through Pechmann Condensation Reaction. Chemistry Africa. 2019;2(3):367–76. DOI: https://doi.org/10.1007/s42250-019-00042-5.
  • 10. Ochieng PJ, Kusuma WA, Rafi M, Sumaryada T. Decipherıng the Action Mechanism of Indonesia Herbal Decoction in the Treatment of Type II Diabetes Using a Network Pharmacology Approach. International Journal of Pharmacy and Pharmaceutical Sciences. 2017;9(3):243. DOI: https://doi.org/10.22159/ijpps.2017v9i3.16413.
  • 11. Yamaguchi J, Yamaguchi AD, Itami K. C-H Bond Functionalization: Emerging Synthetic Tools for Natural Products and Pharmaceuticals. Angewandte Chemie International Edition. 2012;51(36):8960–9009. DOI: https://doi.org/10.1002/anie.201201666.
  • 12. Riadi Y. UV Light Mediated Palladium-Catalyzed Synthesis of 2-Substituedpyrido[2,3- d ]pyrimidines. Polycyclic Aromatic Compounds. 2019;1–6. DOI: https://doi.org/10.1080/10406638.2019.1665554.
  • 13. Ojha NK, Zyryanov GV, Majee A, Charushin VN, Chupakhin ON, Santra S. Copper nanoparticles as inexpensive and efficient catalyst: A valuable contribution in organic synthesis. Coordination Chemistry Reviews. 2017;353:1–57. DOI: https://doi.org/10.1016/j.ccr.2017.10.004.
  • 14. Nagarapu L, Aneesa, Peddiraju R, Apuri S. HClO4–SiO2 as a novel and recyclable catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions. Catalysis Communications. 2007;8(12):1973–6. DOI: https://doi.org/10.1016/j.catcom.2007.08.003.
  • 15. Shaikh T, Sharma A, Kaur H. Ultrasonication-Assisted Synthesis of 3-Substituted Indoles in Water Using Polymer Grafted ZnO Nanoparticles as Eco-Friendly Catalyst. ChemistrySelect. 2019;4(1):245–9. DOI: https://doi.org/10.1002/slct.201802702.
  • 16. Onishi K, Oikawa K, Yano H, Suzuki T, Obora Y. N,N -Dimethylformamide-stabilized palladium nanoclusters as a catalyst for Larock indole synthesis. RSC Advances. 2018;8(21):11324–9. DOI: https://doi.org/10.1039/C8RA01410H.
  • 17. Sadeghi B, Tavasoli FA, Hassanabadi A. Ag Nanoparticles: An Efficient and Versatile Reagent for Synthesis of Bis(indolyl)methanes. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry. 2015;45(9):1396–400. DOI: https://doi.org/10.1080/15533174.2015.1016315.
  • 18. Choi I, Chung H, Park JW, Chung YK. Active and Recyclable Catalytic Synthesis of Indoles by Reductive Cyclization of 2-(2-Nitroaryl)acetonitriles in the Presence of Co–Rh Heterobimetallic Nanoparticles with Atmospheric Hydrogen under Mild Conditions. Organic Letters. 2016;18(21):5508–11. DOI: https://doi.org/10.1021/acs.orglett.6b02659.
  • 19. Nakhate AV, Yadav GD. Hydrothermal Synthesis of CuFe 2 O 4 Magnetic Nanoparticles as Active and Robust Catalyst for N‐ arylation of Indole and Imidazole with Aryl Halide. ChemistrySelect. 2017;2(8):2395–405. DOI: https://doi.org/10.1002/slct.201601846.
  • 20. Zolfigol MA, Ayazi-Nasrabadi R. Synthesis of the first magnetic nanoparticles with a thiourea dioxide-based sulfonic acid tag: application in the one-pot synthesis of 1,1,3-tri(1H-indol-3-yl) alkanes under mild and green conditions. RSC Advances. 2016;6(73):69595–604. DOI: https://doi.org/10.1039/C6RA11620E.
  • 21. Safaei-Ghomi J, Ghasemzadeh MA. Silver iodide nanoparticle as an efficient and reusable catalyst for the one-pot synthesis of benzofurans under aqueous conditions. Journal of Chemical Sciences. 2013;125(5):1003–8. DOI: https://doi.org/10.1007/s12039-013-0451-5.
  • 22. Payra S, Saha A, Guchhait S, Banerjee S. Direct CuO nanoparticle-catalyzed synthesis of poly-substituted furans via oxidative C–H/C–H functionalization in aqueous medium. RSC Advances. 2016;6(40):33462–7. DOI: https://doi.org/10.1039/C6RA04181G.
  • 23. Teimuri-Mofrad R, Gholamhosseini-Nazari M, Payami E, Esmati S. Novel ferrocene-based ionic liquid supported on silica nanoparticles as efficient catalyst for synthesis of naphthopyran derivatives. Research on Chemical Intermediates. 2017;43(12):7105–18. DOI: https://doi.org/10.1007/s11164-017-3061-x.
  • 24. Khodaei MM, Alizadeh A, Haghipour M. Supported 4-carboxybenzyl sulfamic acid on magnetic nanoparticles as a recoverable and recyclable catalyst for synthesis of 3,4,5-trisubstituted furan-2(5H)-one derivatives. Journal of Organometallic Chemistry. 2018;870:58–67. DOI: https://doi.org/10.1016/j.jorganchem.2018.06.012.
  • 25. Singh P, Yadav P, Mishra A, Awasthi SK. Green and Mechanochemical One-Pot Multicomponent Synthesis of Bioactive 2-amino-4 H -benzo[ b ]pyrans via Highly Efficient Amine-Functionalized SiO 2 @Fe3O4 Nanoparticles. ACS Omega. 2020;5(8):4223–32. DOI: https://doi.org/10.1021/acsomega.9b04117.
  • 26. Ji G, Duan Y, Zhang S, Yang Y. Synthesis of benzofurans from terminal alkynes and iodophenols catalyzed by recyclable palladium nanoparticles supported on N,O-dual doped hierarchical porous carbon under copper- and ligand-free conditions. Catalysis Today. 2019;330:101–8. DOI: https://doi.org/10.1016/j.cattod.2018.04.036.
  • 27. Phukan P, Agarwal S, Deori K, Sarma D. Zinc Oxide Nanoparticles Catalysed One-Pot Three-Component Reaction: A Facile Synthesis of 4-Aryl-NH-1,2,3-Triazoles. Catalysis Letters. 2020;150(8):2208–19. DOI: https://doi.org/10.1007/s10562-020-03143-w.
  • 28. Hassanpour A, Khanmiri RH, Abolhasani J. ZnO Nanoparticles as an Efficient, Heterogeneous, Reusable, and Ecofriendly Catalyst for One-Pot, Three-Component Synthesis of 3,4-Dihydropyrimidin-2(1 H )-(thio)one Derivatives in Water. Synthetic Communications. 2015;45(6):727–33. DOI: https://doi.org/10.1080/00397911.2014.987350.
  • 29. Shirzaei M, Mollashahi E, Taher Maghsoodlou M, Lashkari M. Novel synthesis of silica-coated magnetic nano-particles based on acidic ionic liquid, as a highly efficient catalyst for three component system leads to furans derivatives. Journal of Saudi Chemical Society. 2020;24(2):216–22. DOI: https://doi.org/10.1016/j.jscs.2020.01.001.
  • 30. Vatanchian R, Mosslemin MH, Tabatabaee M, Sheibani A. Synthesis of Trans-Dihydroindeno[1,2-b]Furans via Nano γ-Fe 2 O 3 -Quinuclidine-Based Catalyst in an Aqueous Medium. Journal of Chemical Research. 2018;42(12):598–600. DOI: https://doi.org/10.3184/174751918X15411641337056.
  • 31. Hao F, Wang X, Mohammadnia M. Preparation and Characterization of a Novel Magnetic Nano Catalyst for Synthesis and Antibacterial Activities of Novel Furan-2(5 H )-Ones Derivatives. Polycyclic Aromatic Compounds. 2021;1–15. DOI: https://doi.org/10.1080/10406638.2021.1887298.
  • 32. Esmaeilpour M, Javidi J, Dehghani F, Nowroozi Dodeji F. A green one-pot three-component synthesis of tetrahydrobenzo[b]pyran and 3,4-dihydropyrano[c]chromene derivatives using a Fe 3 O 4 @SiO 2 –imid–PMA n magnetic nanocatalyst under ultrasonic irradiation or reflux conditions. RSC Advances. 2015;5(34):26625–33. DOI: https://doi.org/10.1039/C5RA01021G.
  • 33. Ramazani A, Rouhani M, Joo SW. Silica Nanoparticles from Rice Husk Ash: A Green Catalyst for the One-Pot Three-Component Synthesis of Benzo[B]Furan Derivatives. Advanced Materials Research. 2014;875–877:202–7. DOI: https://doi.org/10.4028/www.scientific.net/AMR.875-877.202.
  • 34. Wang Z, Li X, Feng L, Liu B, Shamsa F. DFNS/α-CD/Au as a Nanocatalyst for Interpolation of CO2 into Aryl Alkynes Followed by SN2 Coupling with Allylic Chlorides. Catalysis Letters. 2021;151(7):1911–22. DOI: https://doi.org/10.1007/s10562-020-03451-1.
  • 35. Khan GA, War JA, Naikoo GA, Pandit UJ, Das R. Porous CuO catalysed green synthesis of some novel 3-alkylated indoles as potent antitubercular agents. Journal of Saudi Chemical Society. 2018;22(1):6–15. DOI: https://doi.org/10.1016/j.jscs.2016.03.009.