Beslenme ve Mikrobiyota İlişkisi
Bakteri, virüs, mantar ve protozoa gibi çok sayıda mikroorganizmadan oluşan bağırsak mikrobiyotasının kompozisyonu ve fonksiyonu, doğum şekli, anne sütü alımı, antibiyotik kullanımı ve beslenme gibi çeşitli faktörlerden etkilenmektedir. Bu faktörler arasında beslenme düzenlenebilir bir etmen olması nedeniyle büyük ilgi çekmektedir. Mikrobiyotayı etkileyen ilk diyetsel etmen anne sütü alma durumudur çünkü anne sütünde bulunan oligosakkarit, lizozom, laktoferrin, antikor ve sitokinlerin bağırsaktaki Bifi dobacterium sayısını arttırdığı iyi bilinmektedir. Anne sütünden sonra, ek besinlere geçiş sürecinde seçilen besinler ve beslenme modeli mikrobiyotayı şekillendirmektedir. Ortalama 2-3 yaşta yetişkin kompozisyonuna ulaşan mikrobiyotanın, beslenmede yapılan kısa ve uzun dönem düzenlemeler ile değişebildiği gösterilmiştir. Yetişkin dönemde mikrobiyotayı etkileyen diyetsel etmenlerin başında, diyetin karbonhidrat (özellikle posa), protein ve yağ içeriğinin geldiği görülmektedir. Yüksek hayvansal protein ve doymuş yağ; düşük posa ve karbonhidrat içeren diyetlerin bağırsak mikrobiyotasının zenginliğini ve çeşitliliğini azalttığı, Firmicutes ve Proteobacteria kolonizasyonunu artırdığı gösterilmiştir. Yüksek posalı ve bitkisel bazlı diyetlerin ise bağırsaktaki bakteri çeşitlilik ile Prevotella ve Xylanibacter türlerini artırdığı saptanmıştır. Prebiyotik özellik de gösteren sindirilmeyen karbonhidrat bileşenlerinin mikrobiyotadaki bakteriler tarafından fermantasyonu sonucunda oluşan kısa zincirli yağ asitleri hem kolonositler için enerji kaynağı olmakta, hem de antiinfl amatuvar, antikarsinojenik ve immünomodülatör etkiler göstererek sağlığı geliştirebilmektedirler. Mikrobiyotanın düzenlenmesinde diyetin prebiyotik içeriği kadar önemli olan bir konu, diyetle alınan canlı probiyotik mikroorganizmalardır. Bu noktada, fermente besinlerin potansiyel yararları dikkat çekmektedir. Beslenmenin mikrobiyota üzerine etkileri anlaşılmaya başlanmış olsa da, bunların öneriye dönüştürülebilmesi için ileri araştırmalara gereksinim bulunmaktadır.
The Relation Between Diet and Microbiota
The composition and functions of gut microbiota that composed of microorganisms including bacteria, viruses, fungi, and protozoa are effected by various factors such as mode of delivery, breastmilk, age, antibiotic use, and diet. Among these, diet is a manageable factor, therefore, it takes great attention. The fi rst dietary factor effects microbiota is breastfeeding, because it is well known that human milk oligosaccharides, lysosomes, lactoferrin, antibodies, and cytokines increase Bifi dobacterium counts. Following breastfeeding, foods chosen in weaning period and dietary pattern shapes microbiota. It is shown that microbiota reaches adult composition at about 2-3 years old and can change with short and long term regulations. The fi rst dietary factors that affect microbiota in adulthood are dietary carbohydrate (especially fi bre), protein and lipid content. It is shown that diets high in animal protein and saturated fats; low in fi bre and carbohydrates decrease gut microbiota richness and diversity and increase Firmicutes and Proteobacteria colonisation. High-fi bre and plant-based diets increase gut bacterial diversity as well as Prevotella and Xylanibacter species. Short chain fatty acids occur after fermentation of indigestible carbohydrates that also present prebiotic properties, are energy sources for gut bacteria as well as enhance health through anti-infl ammatory, anticarcinogenic and immune-modulatory impacts. Dietary alive probiotic microorganisms are as important as prebiotic content of diets for modulation of microbiota. At this point, potential benefi ts of fermented foods attract attention. Even if effects of diet on microbiota has begun to be understood, further research is needed to refl ect our knowledge to advice.
___
- 1. Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon
JI. Host-bacterial mutualism in the human intestine. Science.
2005;307(5717):1915-20.
- 2. Neish AS. Microbes in gastrointestinal health and disease.
Gastroenterology. 2009;136(1):65-80.
- 3. Morgan XC, Segata N, Huttenhower C. Biodiversity and functional
genomics in the human microbiome. Trends in genetics.
2013;29(1):51-8.
- 4. Ursell LK, Clemente JC, Rideout JR, Gevers D, Caporaso JG,
Knight R. The interpersonal and intrapersonal diversity of humanassociated
microbiota in key body sites. Journal of Allergy and
Clinical Immunology. 2012;129(5):1204-8.
- 5. Tilg H, Kaser A. Gut microbiome, obesity, and metabolic dysfunction.
The Journal of clinical investigation. 2011;121(6):2126-32.
- 6. Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS,
et al. Metagenomic analysis of the human distal gut microbiome.
Science. 2006;312(5778):1355-9.
- 7. Flint HJ, Duncan SH, Scott KP, Louis P. Interactions and competition
within the microbial community of the human colon: links between
diet and health. Environmental microbiology. 2007;9(5):1101-11.
- 8. Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, et al.
Dominant and diet-responsive groups of bacteria within the human
colonic microbiota. The ISME journal. 2011;5(2):220-30.
- 9. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO.
Development of the human infant intestinal microbiota. PLoS
biology. 2007;5(7):e177. doi: 10.1371/journal.pbio.0050177.
PubMed PMID: 17594176; PubMed Central PMCID: PMC1896187.
- 10. Fouhy F, Ross RP, Fitzgerald GF, Stanton C, Cotter PD. Composition
of the early intestinal microbiota: knowledge, knowledge gaps and
the use of high-throughput sequencing to address these gaps. Gut
microbes. 2012;3(3):203-20. doi: 10.4161/gmic.20169. PubMed
PMID: 22572829; PubMed Central PMCID: PMC3427213.
- 11. Marchesi JR. Human distal gut microbiome. Environmental
microbiology. 2011;13(12):3088-102. Epub 2011/09/13. doi:
10.1111/j.1462-2920.2011.02574.x. PubMed PMID: 21906225.
- 12. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG,
Contreras M, et al. Human gut microbiome viewed across age
and geography. Nature. 2012;486(7402):222-7. doi: 10.1038/
nature11053. PubMed PMID: 22699611; PubMed Central PMCID:
PMC3376388.
- 13. Koleva PT, Kim JS, Scott JA, Kozyrskyj AL. Microbial programming
of health and disease starts during fetal life. Birth defects
research Part C, Embryo today : reviews. 2015;105(4):265-77.
Epub 2015/12/15. doi: 10.1002/bdrc.21117. PubMed PMID:
26663884.
- 14. Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, et al.
Factors infl uencing the composition of the intestinal microbiota in
early infancy. Pediatrics. 2006;118(2):511-21. Epub 2006/08/03.
doi: 10.1542/peds.2005-2824. PubMed PMID: 16882802.
- 15. Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N,
et al. The composition of the gut microbiota throughout life, with
an emphasis on early life. Microbial ecology in health and disease.
2015;26(1):26050.
- 16. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R,
et al. Succession of microbial consortia in the developing infant gut
microbiome. Proceedings of the National Academy of Sciences.
2011;108(Supplement 1):4578-85.
- 17. Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss
JA, et al. The NIH human microbiome project. Genome research.
2009;19(12):2317-23
- 18. Coppa GV, Bruni S, Morelli L, Soldi S, Gabrielli O. The fi rst prebiotics
in humans: human milk oligosaccharides. Journal of clinical
gastroenterology. 2004;38(6 Suppl):S80-3. Epub 2004/06/29.
PubMed PMID: 15220665.
- 19. Ballard O, Morrow AL. Human milk composition: nutrients and
bioactive factors. Pediatric clinics of North America. 2013;60(1):49-
74. Epub 2012/11/28. doi: 10.1016/j.pcl.2012.10.002. PubMed
PMID: 23178060; PubMed Central PMCID: PMCPmc3586783.
- 20. Madan JC, Hoen AG, Lundgren SN, Farzan SF, Cottingham KL,
Morrison HG, et al. Association of Cesarean Delivery and Formula
Supplementation With the Intestinal Microbiome of 6-Week-Old
Infants. JAMA pediatrics. 2016;170(3):212-9. Epub 2016/01/12.
doi: 10.1001/jamapediatrics.2015.3732. PubMed PMID:
26752321; PubMed Central PMCID: PMCPmc4783194.
- 21. Laursen MF, Bahl MI, Michaelsen KF, Licht TR. First Foods and
Gut Microbes. Frontiers in microbiology. 2017;8:356. Epub
2017/03/23. doi: 10.3389/fmicb.2017.00356. PubMed PMID:
28321211; PubMed Central PMCID: PMCPmc5337510.
- 22. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG,
Contreras M, et al. Human gut microbiome viewed across age and
geography. Nature. 2012;486(7402):222-7.
- 23. Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C,
Basaglia G, et al. Gut microbiome of the Hadza hunter-gatherers.
Nature communications. 2014;5.
- 24. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet
JB, Massart S, et al. Impact of diet in shaping gut microbiota
revealed by a comparative study in children from Europe and
rural Africa. Proceedings of the National Academy of Sciences.
2010;107(33):14691-6.
- 25. Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer
M, Vatanen T, et al. Population-based metagenomics analysis
reveals markers for gut microbiome composition and diversity.
Science. 2016;352(6285):565-9.
- 26. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh
SA, et al. Linking long-term dietary patterns with gut microbial
enterotypes. Science. 2011;334(6052):105-8.
- 27. De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi
L, et al. High-level adherence to a Mediterranean diet benefi cially
impacts the gut microbiota and associated metabolome. Gut.
2015:gutjnl-2015-309957.
- 28. Zimmer J, Lange B, Frick J, Sauer H, Zimmermann K, Schwiertz
A, et al. A vegan or vegetarian diet substantially alters the human
colonic faecal microbiota. European journal of clinical nutrition.
2012;66(1):53.
- 29. Wu GD, Compher C, Chen EZ, Smith SA, Shah RD, Bittinger
K, et al. Comparative metabolomics in vegans and omnivores
reveal constraints on diet-dependent gut microbiota metabolite
production. Gut. 2016;65(1):63-72.
- 30. Kabeerdoss J, Devi RS, Mary RR, Ramakrishna BS. Faecal microbiota
composition in vegetarians: comparison with omnivores in a cohort
of young women in southern India. British Journal of Nutrition.
2012;108(6):953-7.
- 31. Bonder MJ, Tigchelaar EF, Cai X, Trynka G, Cenit MC, Hrdlickova B,
et al. The infl uence of a short-term gluten-free diet on the human
gut microbiome. Genome medicine. 2016;8(1):45.
- 32. Sanz Y. Effects of a gluten-free diet on gut microbiota and immune
function in healthy adult humans. Gut Microbes. 2010;1(3):135-7.
- 33. Zivkovic AM, German JB, Lebrilla CB, Mills DA. Human milk
glycobiome and its impact on the infant gastrointestinal
microbiota. Proceedings of the National Academy of Sciences. 2011;108(Supplement 1):4653-8
- 34. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al.
Gut microbiota functions: metabolism of nutrients and other food
components. European Journal of Nutrition. 2017:1-24.
- 35. Macfarlane G, Gibson G, Cummings J. Comparison of fermentation
reactions in different regions of the human colon. Journal of applied
microbiology. 1992;72(1):57-64.
- 36. Steliou K, Boosalis MS, Perrine SP, Sangerman J, Faller DV.
Butyrate histone deacetylase inhibitors. BioResearch open access.
2012;1(4):192-8.
- 37. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J,
Zitoun C, Duchampt A, et al. Microbiota-generated metabolites
promote metabolic benefi ts via gut-brain neural circuits. Cell.
2014;156(1):84-96.
- 38. Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, ZacVarghese
SE, et al. Effects of targeted delivery of propionate to the
human colon on appetite regulation, body weight maintenance and
adiposity in overweight adults. Gut. 2014:gutjnl-2014-307913.
- 39. Duncan SH, Holtrop G, Lobley GE, Calder AG, Stewart CS, Flint
HJ. Contribution of acetate to butyrate formation by human faecal
bacteria. British Journal of Nutrition. 2004;91(6):915-23.
- 40. Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S,
Brody L, et al. The short-chain fatty acid acetate reduces appetite
via a central homeostatic mechanism. Nature communications.
2014;5:3611.
- 41. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen
NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota
compound over generations. Nature. 2016;529(7585):212-5.
- 42. Cummings JH, Branch WJ. Fermentation and the production of
short-chain fatty acids in the human large intestine. Dietary fi ber:
Springer; 1986. p. 131-49.
- 43. Halmos EP, Christophersen CT, Bird AR, Shepherd SJ, Gibson PR,
Muir JG. Diets that differ in their FODMAP content alter the colonic
luminal microenvironment. Gut. 2014:gutjnl-2014-307264.
- 44. Macfarlane G, Cummings J, Allison C. Protein degradation by
human intestinal bacteria. Microbiology. 1986;132(6):1647-56.
- 45. Hentges DJ, Maier BR, Burton GC, Flynn MA, Tsutakawa RK. Effect
of a high-beef diet on the fecal bacterial fl ora of humans. Cancer
research. 1977;37(2):568-71.
- 46. Russell WR, Gratz SW, Duncan SH, Holtrop G, Ince J, Scobbie L, et
al. High-protein, reduced-carbohydrate weight-loss diets promote
metabolite profi les likely to be detrimental to colonic health. The
American journal of clinical nutrition. 2011;93(5):1062-72.
- 47. Drasar B, Crowther J, Goddard P, Hawksworth G, Hill M, Peach S,
et al. The relation between diet and the gut microfl ora in man. Proc
Nutr Soc. 1973;32(2):49-52.
- 48. Fava F, Gitau R, Griffi n B, Gibson G, Tuohy K, Lovegrove J. The type
and quantity of dietary fat and carbohydrate alter faecal microbiome
and short-chain fatty acid excretion in a metabolic syndrome'atrisk'population.
International journal of obesity. 2013;37(2):216.
- 49. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier
O, et al. Changes in gut microbiota control infl ammation in obese
mice through a mechanism involving GLP-2-driven improvement of
gut permeability. Gut. 2009;58(8):1091-103.
- 50. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L.
Polyphenols: food sources and bioavailability. The American journal
of clinical nutrition. 2004;79(5):727-47.
- 51. Marín L, Miguélez EM, Villar CJ, Lombó F. Bioavailability of dietary
polyphenols and gut microbiota metabolism: antimicrobial
properties. BioMed research international. 2015;2015.
- 52. Braune A, Engst W, Blaut M. Identifi cation and functional expression
of genes encoding fl avonoid Oβand Cβglycosidases in intestinal
bacteria. Environmental microbiology. 2016;18(7):2117-29.
- 53. Eid N, Enani S, Walton G, Corona G, Costabile A, Gibson G, et al.
The impact of date palm fruits and their component polyphenols,
on gut microbial ecology, bacterial metabolites and colon cancer
cell proliferation. Journal of nutritional science. 2014;3.
- 54. Jin JS, Touyama M, Hisada T, Benno Y. Effects of green tea
consumption on human fecal microbiota with special reference
to Bifi dobacterium species. Microbiology and immunology.
2012;56(11):729-39.
- 55. Ankolekar C, Johnson D, Pinto MdS, Johnson K, Labbe R, Shetty K.
Inhibitory potential of tea polyphenolics and infl uence of extraction
time against Helicobacter pylori and lack of inhibition of benefi cial
lactic acid bacteria. Journal of medicinal food. 2011;14(11):1321-9.
- 56. Nakayama M, Shigemune N, Tsugukuni T, Jun H, Matsushita T,
Mekada Y, et al. Mechanism of the combined anti-bacterial effect
of green tea extract and NaCl against Staphylococcus aureus and
Escherichia coli O157: H7. Food control. 2012;25(1):225-32.
- 57. Hill M. Intestinal fl ora and endogenous vitamin synthesis. European
Journal of Cancer Prevention. 1997;6(2):S43-S5.
- 58. Gustafsson BE, Daft FS, Mc DE, Smith JC, Fitzgerald RJ. Effects
of vitamin K-active compounds and intestinal microorganisms
in vitamin K-defi cient germfree rats. The Journal of nutrition.
1962;78:461-8. Epub 1962/12/01. PubMed PMID: 13951405.
- 59. Frick PG, Riedler G, Brogli H. Dose response and minimal daily
requirement for vitamin K in man. J Appl Physiol. 1967;23(3):387-
9. Epub 1967/09/01. PubMed PMID: 6047959.
- 60. Guarner F, Khan AG, Garisch J, Eliakim R, Gangl A, Thomson A, et al.
World Gastroenterology Organisation Global Guidelines: probiotics
and prebiotics October 2011. Journal of clinical gastroenterology.
2012;46(6):468-81. doi: 10.1097/MCG.0b013e3182549092.
PubMed PMID: 22688142.
- 61. Hidaka H, Eida T, Takizawa T, Tokunaga T, Tashiro Y. Effects of
fructooligosaccharides on intestinal fl ora and human health.
Bifi dobacteria and microfl ora. 1986;5(1):37-50.
- 62. Meyer D. Health benefi ts of prebiotic fi bers. Advances in food
and nutrition research. 2015;74:47-91. Epub 2015/01/28. doi:
10.1016/bs.afnr.2014.11.002. PubMed PMID: 25624035.
- 63. Schley P, Field C. The immune-enhancing effects of dietary fi bres
and prebiotics. British Journal of Nutrition. 2002;87(S2):S221-S30.
- 64. Joint FAO/WHO Working Group: Guidelines for the evaluation of
probiotics in food: report of a joint FAO/WHO working group on
drafting guidelines for the evaluation of probiotics in food. London,
ON, Canada. 2002.
- 65. Goossens D, Jonkers D, Stobberingh E, Bogaard Avd, Russel M,
Stockbrugger R. Probiotics in gastroenterology: indications and
future perspectives. Scandinavian Journal of GastroenterologySupplements.
2003;38(239):15-6.
- 66. Tannock G, Munro K, Harmsen H, Welling G, Smart J, Gopal P.
Analysis of the fecal microfl ora of human subjects consuming
a probiotic product containing Lactobacillus rhamnosusDR20.
Applied and environmental microbiology. 2000;66(6):2578-88.
- 67. Johansson M-L, Nobaek S, Berggren A, Nyman M, Björck I, Ahrne
S, et al. Survival of Lactobacillus plantarum DSM 9843 (299v), and
effect on the short-chain fatty acid content of faeces after ingestion
of a rose-hip drink with fermented oats. International journal of
food microbiology. 1998;42(1):29-38.
- 68. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE,
Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut