The Effect of Mitochondrial DNA Mutations in Brain Tumors

The Effect of Mitochondrial DNA Mutations in Brain Tumors

Purpose: Brain tumors are a group of diseases in which different genotypes result in different phenotypes at the molecular level. Althoughthere have been a number of studies related to the role of alterations in nuclear genes, such as oncogenes and tumor suppressor genes, in thedevelopment of brain tumors, the effects of mitochondrial genes on tumorigenesis have not been well elucidated.Methods: It is thought that mitochondrial DNA plays an important role in the tumorogenesis process due to the fact that it is more susceptibleto mutations than the nuclear DNA and the repair mechanisms are weaker. Mitochondrial DNA mutations have been extensively studied fortheir use as biomarkers since they can reach high copy number in clonal characterization.Results: MtDNA mutations play an important role in cancer developmental stages, but the mechanisms of cancer development and progressionof these mutations are not fully explained.Conclusion: The identification of mitochondrial DNA defects is anticipated earlier in the diagnosis of brain tumors, and more effectivetreatment protocols will be regulated.

___

  • 1. WHO, IARC, Globocan Cancer Incidence and Mortality Worldwide in 2012. Available from: http://globocan.iarc.fr/ (Last accessed on 2015 Jul 21).
  • 2. Yusoff AA, Abdullah J, Abdullah MR, Mohd Ariff AR, Isa MN. Association of p53 tumor suppressor gene with paraclinical and clinical modalities of gliomas patients in Malaysia. Acta Neurochir (Wien) 2004; 146:595-601. [CrossRef]
  • 3. Milinkovic VP, Skender Gazibara MK, Manojlovic Gacic EM, Gazibara TM, Tanic NT. The impact of TP53 and RAS mutations on cerebellar glioblastomas. Exp Mol Pathol 2014; 97:202-7. [CrossRef]
  • 4. Kirches E, Krause G, Warich-Kirches M et al. High frequency of mitochondrial DNA mutations in glioblastoma multiforme identified by direct sequence comparison to blood samples. Int J Cancer 2001; 93:534-538. [CrossRef]
  • 5. Yeung KY, Dickinson A, Donoghue JF et al. The identification of mitochondrial DNA variants in glioblastoma multiforme. Acta Neuropathol Commun 2014; 2:1. [CrossRef]
  • 6. Wang X. The expanding role of mitochondria in apoptosis. Genes Dev 2001; 15:2922-2933.
  • 7. Wallace DC, Fan W, Procaccio V. Mitochondrial energetics and therapeutics. Annu Rev Pathol 2010; 5:297-348. [CrossRef]
  • 8. Dickinson A, Yeung KY, Donoghue J et al. The regulation of mitochondrial dna copy number in glioblastoma cells. Cell Death Differ 2013; 20:1644-1653. [CrossRef]
  • 9. Saada A. Mitochondria: Mitochondrial OXPHOS (dys) function ex vivo – The use of primary fibroblasts. The International Journal of Biochemistry & Cell Biology 2014; 60-65. [CrossRef]
  • 10. Larsen NB, Rasmussen M, Rasmussen LJ. Nuclear and mitochondrial DNA repair: Similar pathways? Mitochondrion 2005; 5:89-108. [CrossRef]
  • 11. Warburg O. On the origin of cancer cells. Science 1956; 123:309-314.
  • 12. Ghezzi D, Zeviani M. Assembly factors of human mitochondrial respiratory chain complexes: Physiology and pathophysiology. Adv Exp Med Biol 2012; 748:65-106. [CrossRef]
  • 13. Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res 2010; 44:479-496. [CrossRef]
  • 14. Szewczyk A, Wojtczak L. Mitochondria as a pharmacological target. Pharmacol Rev 2002; 54:101-127. [CrossRef]
  • 15. Ye XQ, Li Q, Wang GH et al. Mitochondrial and energy metabolism-related properties as novel indicators of lung cancer stem cells. Int J Cancer 2011; 129:820-831. [CrossRef]
  • 16. Lagadinou ED, Sach A, Callahan K et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 2013; 12:329-341. [CrossRef]
  • 17. Pastò A, Bellio C, Pilotto G et al. Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation. Oncotarget 2014; 5:4305-4319. [CrossRef]
  • 18. Vlashi E, Lagadec C, Vergnes L et al. Metabolic state of glioma stem cells and nontumorigenic cells. Proc Natl Acad Sci U S A 2011; 108:16062-16067.
  • 19. Gasparre G, Hervouet E, de Laplanche E et al. Clonal expansion of mutated mitochondrial DNA is associated with tumor formation and complex I deficiency in the benign renal oncocytoma. Human moleküler genetics 2008; 1;17:986-995. [CrossRef]
  • 20. Polyak K, Li Y, Zhu H, et al. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet 1998; 20:291-293. [CrossRef]
  • 21. Ashtiani ZO, Heidari M, Hasheminasab SM, Ayati M, Rakhshani N. Mitochondrial D-Loop polymorphism and microsatellite instability in prostate cancer and benign hyperplasia patients. Asian Pac J Cancer Prev 2012; 13:3863-868. [CrossRef]
  • 22. Blokhin A, Vyshkina T, Komoly S, Kalman B. Lack of mitochondrial DNA deletions in lesions of multiple sclerosis. Neuromolecular Med. 2008; 10:187-194. [CrossRef]
  • 23. Nagy A, Eder K, Selak M.A, Kalman B. Mitochondrial energy metabolism and apoptosis regulation in glioblastoma brain research. 2015; 127–142. [CrossRef]
  • 24. DiMauro, S. Mitochondrial encephalomyopathies-Fifty years on: The Robert Wartenberg Lecture. Neurology 2013; 81:281-291. [CrossRef]
  • 25. Kirches E, Mawrin C, Schneider-Stock R, Krause G, Scherlach C, Dietzmann K. Mitochondrial DNA as a clonal tumor cell marker: Gliomatosis cerebri. J Neurooncol 2003; 61:1-5.
  • 26. Wong LJ, Lueth M, Li XN, Lau CC, Vogel H. Detection of mitochondrial DNA mutations in the tumor and cerebrospinal fluid of medulloblastoma patients. Cancer Res 2003; 63:3866-3871.
  • 27. Montanini L, Regna-Gladin C, Eoli M et al. Instability of mitochondrial DNA and MRI and clinical correlations in malignant gliomas. J Neurooncol 2005; 74:87-90. [CrossRef]
  • 28. Wong LJ, Tan DJ, Bai RK, Yeh KT, Chang J. Molecular alterations in mitochondrial DNA of hepatocellular carcinomas: Is there a correlation with clinicopathological profile? J Med Genet 2004; 41:65. [CrossRef]
  • 29. Lueth M, Von Deimling A, Pietsch T et al. Medulloblastoma harbor somatic mitochondrial DNA mutations in the D-loop region. J Pediatr Hematol Oncol 2010; 32:156-159. [CrossRef]
  • 30. Lueth M, Wronski L, Giese A et al. Somatic mitochondrial mutations in pilocytic astrocytoma. Cancer Genet Cytogenet 2009; 192:30-35. [CrossRef]
  • 31. Kurtz A, Lueth M, Kluwe L et al. Somatic mitochondrial DNA mutations in neurofibromatosis type 1-associated tumors. Mol Cancer Res 2004; 2:433-441.
  • 32. Wong LJ, Lueth M, Li XN, Lau CC, Vogel H. Detection of mitochondrial DNA mutations in the tumor and cerebrospinal fluid of medulloblastoma patients. Cancer Res 2003; 63:3866-3871.
  • 33. Gashti NG, Salehi Z, Madani AH, Dalivandan ST. 4977-bp mitochondrial DNA deletion in infertile patients with varicocele. Andrologia 2014; 46:258-262. [CrossRef]
  • 34. Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC. Mitochondrial DNA deletions in human brain: Regional variability and increase with advanced age. Nat Genet 1992; 2:324-329. [CrossRef]
  • 35. Kato T, Stine OC, McMahon FJ, Crowe RR. Increased levels of a mitochondrial DNA deletion in the brain of patients with bipolar disorder. Biol Psychiatry 1997; 42:871-875. [CrossRef]
  • 36. Kirches E, Michael M, Woy C et al. Loss of heteroplasmy in the displacement loop of brain mitochondrial DNA in astrocytic tumors. Genes Chromosomes Cancer 1999; 26:80-83. [CrossRef]
  • 37. Ishikawa, K, Hayashi, J. A Novel function of mtDNA: its İnvolvement in metastasis. Ann. NYA cad. Sci. 2010; 1201:40-43. [CrossRef]
  • 38. Liang BC, Hays L. Mitochondrial DNA copy number changes in human gliomas. Cancer Lett 1996; 105:167-173. [CrossRef]
  • 39. Marucci G, Maresca A, Caporali L et al. Oncocytic glioblastoma: A glioblastoma showing oncocytic changes and increased mitochondrial DNA copy number. Hum Pathol 2013; 44:1867-1876. [CrossRef]
  • 40. Iommarini L, Calvaruso MA, Kurelac I, Gasparre G, Porcelli AM. Complex I impairment in mitochondrial diseases and cancer: parallel roads leading to different out comes. Int.J. Biochem. Cell Biol. 2013; 45:47-63. [CrossRef]
  • 41. Dmitrenko V, Shostak K, Boyko O et al. Reduction of the transcription level of the mitochondrial genome in human glioblastoma. Cancer Lett 2005; 218:99-107. [CrossRef]
  • 42. Feichtinger RG, Weis S, Mayr JA et al. Alterations of oxidative phosphorylation complexes in astrocytomas. Glia 2014; 62:514-525. [CrossRef]
  • 43. Lloyd RE, Keatley K, Littlewood DT et al. Identification and functional prediction of mitochondrial complex III and IV mutations associated with glioblastoma. Neuro Oncol 2015; 17:942-952. [CrossRef]
  • 44. Cui H, Huang P, Wang Z et al. Association of decreased mitochondrial DNA content with the progression of colorectal cancer. BMC Cancer 2013; 13:110. [CrossRef]
  • 45. Lin JC, Wang CC, Jiang RS, Wang WY, Liu SA. Impact of somatic mutations in the D-loop of mitochondrial DNA on the survival of oral squamous cell carcinoma patients. PLoS One 2015; 10:0124322. [CrossRef]
  • 46. Challen C, Brown H, Cai C, et al. Mitochondrial DNA mutations in head and neck cancer are infrequent and lack prognostic utility. Br J Cancer 2011; 104:1319-1324. [CrossRef]
  • 47. Lee H, Lee JH, Kim DC et al. Is mitochondrial DNA copy number associated with clinical characteristics and prognosis in gastric cancer? Asian Pac J Cancer Prev 2015; 16:87-90. [CrossRef]
  • 48. Montanini L, Regna-Gladin C, Eoli M et al. Instability of mitochondrial DNA and MRI and clinical correlations in malignant gliomas. J Neuro oncol 2005; 74:87-90. [CrossRef]
  • 49. Vidone M, Clima R, Santorsola M, et al. A comprehensive characterization of mitochondrial DNA mutations in glioblastoma multiforme. Int J Biochem Cell Biol 2015; 63:46-54. [CrossRef]