The antimicrobial efficiency of some green seaweeds from the Mediterranean coast against some pathogenic bacteria

During the past several years, microbial resistance to common antibiotics has continually increased, and this growing resistance threatens the effective treatment of bacterial infections. Thus, there is increased research on novel drugs like seaweeds. In this study, crude extracts of three seaweeds (Ulva clathrate, Ulva lactuca and Ulva compressa) were obtained with a Soxhlet extraction apparatus. Evaluation of antimicrobial efficiency was carried out using well diffusion method and microdilution method (MIC) at different concentrations (100-0.195mg/ml) for Staphylococcus aureus and Escherichia coli. The green seaweed extracts produced inhibition zones ranging from 7 to 12.5 mm. Methanol extracts produced the strongest inhibitory activity against the tested bacterial species. Overall, this study provides data on the potential use of algal extracts for the development of antimicrobial agents to treat infectious diseases.

___

  • Adwan, G., & Mhanna, M. (2009). Synergistic effects of plant extracts and antibiotics on Staphylococcus aureus strains isolated from clinical specimens. Asian Pacific Journal of Tropical Medicine, 2(3), 46-51.
  • Aguilar-Briseño, JA., Cruz-Suarez, L, E., Sassi, J, F., Ricque-Marie, D., Zapata-Benavides, P., Mendoza-Gamboa, E., Rodríguez-Padilla, C., Trejo-Avila, LM. (2015). Sulfated polysaccharides from Ulva clathrate and Cladosiphon okamuranus seaweeds both inhibit viral attachment/entry and cell-cell fusion. in NDV infection. Marine drugs, 13(2), 697-712.
  • Amoako, D, G., Somboro, A, M., Abia, A, L, K., Allam, M., Ismail, A., Bester, L., & Essack SY. (2019). Genomic analysis of methicillin-resistant Staphylococcus aureus isolated from poultry and occupational farmworkers in Umgungundlovu District. South Africa. Science of the total environment, 670, 704-716.
  • Benrabia, I.., Hamdi, T, M., Shehata, A, A., Neubauer, H., & Wareth, G. (2020). Methicillin-Resistant Staphylococcus Aureus (MRSA) in Poultry Species in Algeria: Long-Term Study on Prevalence and Antimicrobial Resistance. Veterinary Sciences, 7(2), 54.
  • Chiheb, I., Riadi, H., José, M, L., Francisco, D, S, J., Antonio, G, V, J., Bouziane, H., and Kadiri, M. (2009). Screening of antibacterial activity in marine green and brown macroalgae from the coast of Morocco. African Journal of Biotechnology, 8(7), 1258-1262.
  • CLSI Performance standards for antimicrobial susceptibility testing. Approved Standards CLSI. 2010: M100-S20.
  • Costa, L, S., Fidelis, G, P., Cordeiro, S, L., Oliveira, R, M., Sabry, D, D, A., Câmara, R, B, G., Costa, M, S, S, P., Almeida-Lima, J., Farias, E, H, C., Leite, E, L., Rocha, H, A, O. (2010). Biological activities of sulfated polysaccharides from tropical seaweeds. Biomedicine & Pharmacotherapy, 64(1), 21-28.
  • Cox, S., Abu-Ghannam, N., Gupta, S. (2010). An Assessment of the Antioxidant and Antimicrobial Activity of Six Species of Edible Irish Seaweeds. International Food Research Journal, 17, 205-220.
  • Das, A, K., Niang, H., Sahoo, A, K., Kumar, S., & Das D. (2019). Retrospect of breeding for genetic resistance to diseases in poultry and farm animals. Indian Journal of Animal Health, 58(1), 21-44.
  • El Seedy, F, R., Abed, A, H., Wafaa, M, M, H., Bosila, A, S., & Mwafy, A. (2019). Antimicrobial resistance and molecular characterization of pathogenic E. coli isolated from chickens. Journal of Veterinary Medical Research. 26(2), 280-292.
  • El-Hindi, M., Mosleh, F., Aldine, S., Gharbiya, R., El-Kichaoui, A. (2017). Antibacterial Potentiality of Water Extract of selected Honey Samples on Some Clinical Isolates. The Pharmaceutical and Chemical Journal, 4(3), 37-42.
  • Elmanama, A, A., Al-Reefi, M, R., Shamali, M, A., & Hemaid, H, I. (2019). Carbapenems Resistance among Gram-Negative Bacteria Isolated from Poultry Samples in Gaza-Palestine. The International Arabic Journal of Antimicrobial Agents, 8, (3).
  • Elnabris, K, J., Elmanama, A, A., & Chihadeh, W, N. (2013). Antibacterial activity of four marine seaweeds collected from the coast of Gaza Strip, Palestine. Mesopotamian Journal of Marine Science, 28(1), 81-92.
  • Farasat, M., Khavari-Nejad, R, A., Nabavi, S, M, B., & Namjooyan, F. (2014). Antioxidant activity, total phenolics and flavonoid contents of some edible green seaweeds from northern coasts of the Persian Gulf. Iranian Journal of pharmaceutical research, 13(1), 163.
  • Gupta, V, K., & Sharma, S, K. (2006). Plants as natural antioxidants. Natural product radiance, 5(4), 326-334.
  • Gussmann, M., Steeneveld, W., Kirkeby, C., Hogeveen, H., Farre, M., Halasa, T. (2019). Economic and epidemiological impact of different intervention strategies for subclinical and clinical mastitis. Preventive veterinary medicine, 166, 78–85.
  • Khanal, S., Kandel, M., & Shah, M,P. (2019). Antibiogram Pattern of Escherichia coli, Salmonella spp. and Staphylococcus spp. Isolates from Broiler Chicken. Nepalese Veterinary Journal, 36, 105-110.
  • Kirbag, S., Zengin, F., Kursat, M. (2009). Antimicrobial Activities of Extracts of some Plants. Pakistan Journal of Botany, 41(4), 2067-2070.
  • Laptev, G, Y., Filippova, V, A., Kochish, I, I., Yildirim, E, A., Ilina, L, A., Dubrovin, A,V., Brazhnik, E, A., Novikova, N, I., Novikova, O, B., Dmitrieva, M, E., Smolensky, V, I., Surai, P, F., Griffin, D, K., Romanov, M, N. (2019). Examination of the expression of immunity genes and bacterial profiles in the caecum of growing chickens infected with Salmonella Enteritidis and fed a phytobiotic. Animals, 9(9), 615.
  • Logue, C, M., Andreasen, C, B., Borst, L, B., Eriksson, H., Hampson, D, J., Sanchez, S., Fulton R, M. (2020). Other Bacterial Diseases. Diseases of poultry, 995-1085. Mabrouk, M, I. (2012). Synergistic and antibacterial activity of six medicinal plants used in folklore medicine in Egypt against E. coli O157. H7. Journal of Application Science Research, 8(2), 1321-1327.
  • Madzgalla, S., Syed, M, A., Khan, M, A., Rehman, S, S., Muller, E., Reissig, A., Ehricht, R., Monecke, S. (2016). Molecular characterization of Staphylococcus aureus isolates causing skin and soft tissue infections in patients from Malakand, Pakistan. European Journal of Clinical Microbiology & Infectious Diseases, 35, 1541–1547.
  • MOHAMED, S., HASHIM, S, N., RAHMAN, H, Abdul. (2012). Seaweeds A sustainable functional food for complementary and alternative therapy. Trends in Food Science & Technology, 23(2), 83-96.
  • Moussa, S, H., Tayel, A, A., Al-Hassan, A, A., & Farouk, A. (2013). Tetrazolium/Formazan test as an efficient method to determine fungal chitosan antimicrobial activity. Journal of Mycology, 2013.
  • Omar, H, H., Shiekh, H, M., Gumgumjee, N, M., El-Kazan, M, M., El-Gendy, A, M. (2012) . Antibacterial activity of extracts of marine algae from the Red Sea of Jeddah, Saudi Arabia. African Journal of Biotechnology, 11(71), 13576-13585.
  • Perez, R, M., Avila, A, J, G., Perez, G, S., Martinez, C, A., Martinez, C, G. (1990). Antimicrobial activity of some American algae. Journal of Ethnopharmacology, 29, 111-18.
  • Pina-Pérez, M, C., Rivas, A., Martínez. A., Rodrigo, D. (2017). Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food. Food Chemistry, 235, 34-44.
  • Rajasulochana, P., Dhamotharan, R., Krishnamoorthy, P., & Murugesan, S. (2009). Antibacterial activity of the extracts of marine red and brown algae. The Journal of American Science, 5(3), 20-25.
  • Sastry, V, M, V, S., Rao, G, R, K. (1994). Antibacterial substances from marine algae: successive extraction using benzene, chloroform, and methanol. Botanica Marina, 37, 357-360.
  • Seenivasan, R., Indu, H., Archana, G., & Geetha, S. (2010). The Antibacterial activity of some marine algae from the southeast coast of India. Journal of Pharmacy Research, 3(8), 1907-1912.
  • Sharma, A. (2011). Antibacterial activity of ethanolic extracts of some arid zone plants. International Journal of PharmTech Research, 3, 283-286. ‏ Sivakumar. S. R., and Vignesh, A. (2014). In vitro activity of seaweed extracts collected from Gulf of Mannar coast islands Tamilnadu on clinical isolates. World Journal of Fish and Marine Sciences, 6(6), 504-508.
  • Souza, S, M., Delle-Monache, F., Smânia, A. (2005). Antibacterial activity of coumarins. Zeitschrift fuer Naturforschung C, 60(9-10), 693-700.
  • Taskin, E., Caki, Z., Ozturk, M., Taskin, E. (2010). Assessment of in vitro antitumoral and antimicrobial activities of marine algae harvested from the eastern Mediterranean sea. African Journal of Biotechnology. 9(27), 4272-4277.
  • Thomer, L., Schneewind, O., Missiakas, D. (2016). Pathogenesis of Staphylococcus aureus bloodstream infections. Annual Review of Pathology: Mechanisms of Disease, 11, 343–364.
  • Tortora, G, J., Funke, B, R., Case, C, L. (2001). In Microbiology. An Introduction. Benjamin Cummings, San Francisco.; 88 pp.
  • Tshikalange, T, E., Meyer, J, J, M., Hussein, A. A. ( 2005). Antimicrobial activity, toxicity, and the isolation of a bioactive compound from plants used to treat sexually transmitted diseases. Journal of Ethnopharmacology, 96, 515-519.
  • Wijesekara, I., Pangestuti, R., Kim, S, K. (2011). Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydrate polymers, 84(1), 14-21.