Synthesis and Characterization of Cross-linkable Viologen Derivatives

Synthesis and Characterization of Cross-linkable Viologen Derivatives

In this study, crosslinkable allyl functional viologen derivative (ALV-Br) was synthesized with 4-4'biridyl in the presence of allyl bromide in acetonitrile and the precipitated product was separated by filtration. Chemical characterization of the obtained structure was carried out as a result of FT-IR and 1H-NMR spectra. In the cyclic voltammetry (CV) measurements performed for electrochemical characterization, a two-step reversible reduction peak attributed to viologen salts was clearly observed in the 0-0.8 V range. According to the UV-Vis absorption spectra, it is seen that they only absorb in the UV region below 400 nm in both solution and thin film. Thin films of ALV-Br salt were then spray coated in the presence of a tetrathiol-based crosslinker (pentaerythritol tetrakis(3-mercapto-propionate).In the final step, the surface morphology of the crosslinked thin film was examined by Atomic force microscopy (AFM) and compared with the results of the non-crosslinked one. Finally, the patterned film of ALV-Br could be obtained by this technique.

___

  • Altınışık, S., & Koyuncu, S. (2023). A Novel Viologen-Derived Covalent Organic Framework Based Metal Free Catalyst for Nitrophenol Reduction. ChemCatChem, 15(4), e202201418. https://doi.org/https://doi.org/10.1002/cctc.202201418
  • Bange, K. (1999). Colouration of tungsten oxide films: A model for optically active coatings. Solar Energy Materials and Solar Cells, 58(1), 1. https://doi.org/10.1016/S0927-0248(98)00196-2
  • Bronstein, H., Nielsen, C. B., Schroeder, B. C., & McCulloch, I. (2020). The role of chemical design in the performance of organic semiconductors. Nature Reviews Chemistry, 4(2), 66-77. https://doi.org/10.1038/s41570-019-0152-9
  • Ding, J., Zheng, C., Wang, L., Lu, C., Zhang, B., Chen, Y., Li, M., Zhai, G., & Zhuang, X. (2019). Viologen-inspired functional materials: synthetic strategies and applications [10.1039/C9TA01724K]. Journal of Materials Chemistry A, 7(41), 23337-23360. https://doi.org/10.1039/C9TA01724K
  • Doyranlı, C., Altınışık, S., Özdemir, M., & Koyuncu, S. (2022). Tetra-Carbazole based electroactive donor-acceptor dyes: Effect of the phenyl bridging unit on the electrochromic performance. Dyes and Pigments, 204, 110467. https://doi.org/https://doi.org/10.1016/j.dyepig.2022.110467
  • Gu, C., Jia, A.-B., Zhang, Y.-M., & Zhang, S. X.-A. (2022). Emerging Electrochromic Materials and Devices for Future Displays. Chemical Reviews, 122(18), 14679-14721. https://doi.org/10.1021/acs.chemrev.1c01055 Hoyle, C. E., & Bowman, C. N. J. A. C. I. E. (2010). Thiol–ene click chemistry. 49(9), 1540-1573. https://doi.org/10.1002/anie.200903924
  • Killops, K. L., Campos, L. M., & Hawker, C. J. J. J. o. t. A. C. S. (2008). Robust, efficient, and orthogonal synthesis of dendrimers via thiol-ene “click” chemistry. 130(15), 5062-5064. https://doi.org/10.1021/ja8006325
  • Kim, Y. J., Jeong, H. K., Seo, J. K., Chai, S. Y., Kim, Y. S., Lim, G. I., Cho, M. H., Lee, I. M., Choi, Y. S., & Lee, W. I. (2007). Effect of TiO2 particle size on the performance of viologen-anchored TiO2 electrochromic device. J Nanosci Nanotechnol, 7(11), 4106-4110. https://doi.org/https://doi.org/10.1166/jnn.2007.029
  • Liu, Y., & Boyer, C. (2017). Thiol-ene click chemistry: a multifaceted toolbox for small molecule and polymer synthesis. Chemical Society Reviews, 46(14), 4174-4187. https://doi.org/10.1039/B901979K
  • Lowe, A. B., Hoyle, C. E., & Bowman, C. N. J. J. o. M. C. (2010). Thiol-yne click chemistry: A powerful and versatile methodology for materials synthesis. 20(23), 4745-4750. https://doi.org/10.1039/B917102A
  • Madasamy, K., Velayutham, D., Suryanarayanan, V., Kathiresan, M., & Ho, K.-C. (2019). Viologen-based electrochromic materials and devices [10.1039/C9TC00416E]. Journal of Materials Chemistry C, 7(16), 4622-4637. https://doi.org/10.1039/C9TC00416E
  • Moon, H. C., Lodge, T. P., & Frisbie, C. D. (2014). Solution-Processable Electrochemiluminescent Ion Gels for Flexible, Low-Voltage, Emissive Displays on Plastic. Journal of the American Chemical Society, 136(9), 3705-3712. https://doi.org/10.1021/ja5002899
  • Oh, H., Seo, D. G., Yun, T. Y., Kim, C. Y., & Moon, H. C. (2017). Voltage-Tunable Multicolor, Sub-1.5 V, Flexible Electrochromic Devices Based on Ion Gels. ACS Appl Mater Interfaces, 9(8), 7658-7665. https://doi.org/10.1021/acsami.7b00624
  • Shah, K. W., Wang, S.-X., Soo, D. X. Y., & Xu, J. (2019). Viologen-Based Electrochromic Materials: From Small Molecules, Polymers and Composites to Their Applications. Polymers, 11(11), 1839. https://www.mdpi.com/2073-4360/11/11/1839
  • Striepe, L., & Baumgartner, T. (2017). Viologens and Their Application as Functional Materials. Chemistry – A European Journal, 23(67), 16924-16940. https://doi.org/https://doi.org/10.1002/chem.201703348
  • Vinh Quy, V. H., Kim, K.-W., Yeo, J., Tang, X., In, Y. R., Jung, C., Oh, S. M., Kim, S. J., Lee, S. W., Moon, H. C., & Kim, S. H. (2022). Tunable electrochromic behavior of biphenyl poly(viologen)-based ion gels in all-in-one devices. Organic Electronics, 100, 106395. https://doi.org/https://doi.org/10.1016/j.orgel.2021.106395
  • Wang, H., Barrett, M., Duane, B., Gu, J., & Zenhausern, F. (2018). Materials and processing of polymer-based electrochromic devices. Materials Science and Engineering: B, 228, 167-174. https://doi.org/https://doi.org/10.1016/j.mseb.2017.11.016