Comparative analysis and manufacturing of airfoil structures suitable for use at low speeds

Comparative analysis and manufacturing of airfoil structures suitable for use at low speeds

An aerodynamic technique to calculating lift and drag coefficients is one of the required instruments in the wing design process. During the last decades, several tools and software have been developed according to aero-dynamics and numerical methods. Nowadays, aeronautical architecture requires many calculations. Today’s techno-logists use a variety of simulation techniques to avoid a expensive model testing. This paper explains how wing profiles can be modelled using ANSYS Fluent and tested by low-speed tests considering experimental literature re-sults. With the selected wing profile, the geometry is shaped in two dimensions and designed in three dimensions. Computational fluid dynamics (CFD) was adopted as the method for studying wing profiles. Wing profiles created at 0 to 20-degree attack angles are calculated in the simulation area equal to the actual wind tunnel scale, and equations are solved using the RNG k-Epsilon turbulence model. The process of developing the grids was realized with Ansys Mesher software. The solution stage and the result show operations were carried out with the CFD Post software. The study of the low velocity and high transport wing profiles, the drag coefficient, the lift coefficient, and the effect on the lift-drag ratio were studied using a numerical procedure. After determining the high efficiency of wing profi-les, production of a selected profile began with a static examination.

___

  • Chitte P., Jadhav P. K., & Bansode S. S. (2013). Statistic and Dynamic Analysis of Typical Wing Structure of Aircraft Using Nastran, International Journal of Application or Innovation in Engineering & Management, ISSN: 2319-4847.
  • Kumara S. M., Raghavendra K., Venkataswamy A. M., Ramachandra H. V. (2012). Fractographic Analysis of Tensile Failures of Aerospace Grade Composites, Material Research, 15(6), 990-997.
  • Schmid Fuertes T.A., Kruse T., Korwien T., & Geistbeck M. (2015). Bonding of CFRP Primary Aerospace Structures - Discussion of the Certification Boundary Conditions and Related Technology Fields Addressing the Needs for Development, Composite Interfaces. 22(8), pp. 795-808.
  • Davies P., Choqueuse D., & Devaux H. (2012). Failure of Polymer Matrix Composites in Marine and Off-shore Applications, Editors: Robinson P., Greenhalgh E., Pinho S., Failure Mechanisms in Polymer Matrix Composites, 1st ed., Woodhead Publishing, Cambridge, pp. 300-336.
  • Aviation Outlook (2021), Available at: https://www.compositesworld.com/articles/aviation-outlook-fuel-pricing-ignites-demand-for-composites-in-commercial-transports.
  • Shama R. N., Simha, T. G. A., Rao K. P., Kumar R. G. V. V. (2020), Carbon Composites Are Becoming Competitive and Cost Effective, Infosys Limited, Retrieved from: https://www.infosys.com/engineering-services/white-papers/Documents/carbon-composites-cost-effective.pdf/.
  • Choubey G., Suneetha L., K.M. Pandey. (2018), Composite Materials Used in Scramjet- A Review, Materials Today: Proceedings, 5, pp. 1321-1326.
  • Lee J. Y., Yan J. A., Chua C. K. (2017), Fundamentals, and applications of 3D printing for novel materials, Applied Materials Today, 7, pp. 120-133.
  • Delogu M., Zanchi L., Dattilo C.A., Pierini M. (2017), Innovative Composites and Hybrid Materials for Electric Vehicles Lightweight Design in a Sustainability Perspective, Materials Today Communications, 13, pp. 192-209.
  • Karthigeyan P., Raja M. S., Hariharan R., Karthikeyan R., Prakash S. (2017), Performance Evaluation of Composite Material for Aircraft Industries, Materials Today: Proceedings, 4, pp.3263-3269.
  • Yadav S., Gangwar S., Singh S. (2017), Micro/Nano Reinforced Filled Metal Alloy Composites: A Review Over Current Development in Aerospace and Automobile Applications, Materials Today: Proceedings, 4, pp. 5571-5582.
  • Schwartz M. (1992), Composite Materials Handbook, 2nd ed., McGraw-Hill, New York.
  • Basri, Ernnie I., Mohamed T.H. Sultan, M. Faizal, Adi A. Basri, Mohd. F. Abas, M.S. Abdul Majid, J.S. Mandeep, Kamarul A. Ahmad. (2019), Performance Analysis of Composite Ply Orientation in Aeronautical Application of Unmanned Aerial Vehicle (UAV) NACA4415 Wing, Journal of Materials Research and Technolog, 8(5), pp. 3822-3834. https://doi.org/10.1016/j.jmrt.2019.06.044.
  • Semrád K., Lipovský P., Čerňan J., Jurčovič M. (2014), Analysis of All-Composite Wing Design Containing Magnetic Microwires, Procedia Engineering, 96, pp. 428-434, https://doi.org/10.1016/j.proeng.2014.12.112.
  • Onour H. K., Jahangiri M., Sedaghat A. (2011), Theoretical Aerodynamic Analysis of Six Airfoils for Use on Small Wind Turbines, Proceedings of the 1st International Conference on Emerging Trends in Energy Conservation – ETEC, Tehran, Iran, 20-21 November.
  • Parashar H. (2015), Calculation of Aerodynamic Characteristics of NACA 2415, 23012, 23015 Airfoils Using Computational Fluid Dynamics (CFD), International Journal of Science, Engineering and Technology Research, 4(3), pp. 610–614.
  • Bright G., Broughton K., Williams D., Wunderlin N., Martin D. (2016), Multipurpose Off-road Flying Vehicle, Design and Research Project 2, University of Kwazulu-Natal, Discipline of Mechanical Engineering, Durban.
  • Syamsuar S., Djatmiko E. B., Erwandi E., Mujahid A. S., Subchan S. (2016), The Hydroplaning Simulation of Flying Boat Remote Control Model, Jurnal Teknologi, 78(6), pp. 191–197, DOI:10.11113/jt.v78.4267.
  • Jony H. N., Hossain S., Raiyan F. M., Akanda U. N. M. (2014), A Comparative Flow Analysis of Naca6409 and Naca4412 Aerofoil, International Journal of Research in Engineering and Technology, 03(10), pp. 342–350.
  • Soutis C. (2005), Fibre Reinforced Composites in Aircraft Construction, Progress in Aerospace Science, 41(2), pp. 143-151, https://doi.org/10.1016/j.paerosci.2005.02.004.
  • Kanesan G., Mansor S., Abdul-Latif A. (2014), Validation of UAV Wing Structural Model for Finite Element Analysis, J Teknol, 71, pp. 1-5.
  • Fertis D. G. (1994), New Airfoil‐Design Concept with Improved Aerodynamic Characteristics, Journal of Aerospace Engineering, 7(3), pp. 328-339.
  • Sobieczky H. (1999), Parametric Airfoils and Wings, In: Fujii K., Dulikravich G.S., Recent Development of Aerodynamic Design Methodologies, Notes on Numerical Fluid Mechanics (NNFM), vol 65, Vieweg+Teubner Verlag, https://doi.org/10.1007/978-3-32289952- 1_4.
  • Jaroslaw S., Raphael T. (1996), Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments, Structural Optimization, 14, pp. 1-23.
  • См Егер. (1986), Основы автоматизированного проектирования самолетов.Машиностроение, pp. 232, Москва.
  • Anderson J. D. (1999), Aircraft Performance and Design, Boston, WCB/McGraw-Hill.
  • Anderson J. D. (2001), Introduction to Flight, McGraw-Hill, New York.
  • Meganathan V. (2014), Aircraft Design Project-I: Heavy Business Jet.
  • Henne P. A. (1990), Applied Computational Aerodynamics, Washington DC, American Institute of Aeronautics and Astronautics.
  • Sadraey M. (2013), Aircraft Design: A Systems Engineering Approach, 1st ed., Wiley, New Hampshire.
  • Jones W. P., Launder B. E. (1972), The Prediction of Laminarization with a Two-Equation Model of Turbulence, International Journal of Heat and Mass Transfer, vol. 15, pp. 301-314.
  • Launder B. E., Sharma B. I. (1974), Application of the Energy Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc, Letters in Heat and Mass Transfer, vol. 1, no. 2, pp. 131-138.
  • Lift-to-drag ratio- Wikipedia. (2019), Retrieved from: http://www.wikizero.biz/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvTGlmdC10by1kcmFnX3JhdGlv.
  • Stollery J. L. (2017), Aerodynamics, Aeronautics and Flight Mechanics, In Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 211, https://doi.org/10.1177/095441009721100102.
  • Sharma S. (2016), An Aerodynamic Comparative Analysis of Airfoils for Low-Speed Aircrafts, International Journal of Engineering Research, V5 (11), pp. 525–529. https://doi.org/10.17577/ijertv5is110361.
  • Epoksi hexion. (2021), Retrieved from: https://www.dostkimya.com/tr/urunler/epoksi-sistemler/laminasyon-epoksi-hexion-mgs-l285-sistemi.
  • Yongchang Y., Zhang S., Li H., Wang X., Tang Y. (2017), Modal and Harmonic Response Analysis of Key Components of Ditch Device Based on ANSYS, Procedia Engineering, 174, pp. 956–64, https://doi.org/10.1016/j.proeng.2017.01.247.
Journal of Advanced Research in Natural and Applied Sciences-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2015
  • Yayıncı: Çanakkale Onsekiz Mart Üniversitesi
Sayıdaki Diğer Makaleler

Evaluation of Consumers' Aspects on Organic Farming Products by Regions

Başak AYDIN, Murat DOĞU, Ayten AŞKIN KILINÇ, Sunay DEMİR, Bülent TARIM, Duygu AKTÜRK, Filiz PEZİKOĞLU, Volkan BURUCU, Mustafa ASLAN

Culturable Bacterial Communities Related to Different Larval Stages of Sanys irrosea (Guenee, 1852) (Lepidoptera: Noctuoidae)

Ali SEVİM, Elif SEVİM

The Effect of Nitrogen and Phosphorus Limitations at Different Salt Ratios on Growth and Biochemical Composition of Tetraselmis suecica (Chlorodendrophyceae)

Cananur SİSALAN PİHAVA, Leyla USLU

Yer Radarı (GPR) Uygulaması ile Kısmi Yıkılmış Bir Köprünün Sağlık Durumunun Belirlenmesi

Gökhan KILIÇ

Deniz Ulaştırma İşletme Mühendisliği Bölümlerindeki Hiyerarşik Yapının Öğrenciler Üzerindeki Psikolojik Etkilerinin Kapsamlı Analizi

Devran YAZIR, Sefa YAY

Fretting behavior of piston ring-cylinder liner components of a diesel engine running on TiO2 nanolubricant

Ali Can YILMAZ

Improving The Physical Stability Of Virgin Olive Oil Mayonnaise

Melis COSKUN, Sinem ARGUN, Emrah KIRTIL

Comparative analysis and manufacturing of airfoil structures suitable for use at low speeds

Mert GÖKDEMİR, Satılmış ÜRGÜN, Sinan FİDAN

Effect of Grovth Medium on L-Dopa and Dopamine Production Using Citrobacter freundii (NRRL B-2643)

Meltem ÇAKMAK, Veyis SELEN, Dursun ÖZER, Fikret KARATAŞ, Sinan SAYDAM

Üretim Sektöründe Sürdürülebilirlik için Sosyal Yaşam Döngüsü Değerlendirmesi: Çimento Üretimi Örneği

Büşra CİCİ, Beyhan PEKEY, Simge TANER ÇANKAYA