Yarı-rijit kiriş-kolon birleşimli ince levhalı bir çelik perdenin tersinir yükler altında davranışı
İnce levhalı çelik perdeler, büyük başlangıç rijitliğine ve yüksek süneklik ile birlikte büyük enerji sönümleme kapasitesine sahip olmaları nedeniyle oldukça etkili yatay yük taşıyıcı sistemlerdir. Çok katlı, levhalı bir çelik perde, ince çelik levhalar ile bu levhaların bağlandığı kolon ve kiriş elemanlardan oluşmaktadır. Bu araştırma kapsamında, yarı-rijit kiriş-kolon birleşimleri içeren ince levhalı çelik perdelerin tersinir yükler altında davranışlarını anlayabilmek amacıyla deneysel bir çalışma yürütülmüştür. Deney numunesi olarak 1/3 ölçekli, tek katlı ve tek açıklıklı çelik perde kullanılmaktadır. Kolon eksenleri arasındaki mesafe 1800 mm, kiriş eksenleri arasındaki yükseklik ise 1200mm’dir. İnce levha kalınlığı 0.50 mm olarak belirlenmiştir. Deney, tersinir yükleme altında ATC-24 esas alınarak gerçekleştirilmiştir. Numunenin deney sırasında sergilediği davranışı tanımlayabilmek amacıyla 53 adet şekil değiştirme ölçer ile 12 adet yer değiştirme ölçerden yararlanılmaktadır. Deney sonucunda sisteme ait, başlangıç rijitliği, akma dayanımı ve akma yer değiştirmesi gibi karakteristik bilgiler ile yük-yer değiştirme eğrisi elde edilerek ince levhalı çelik perdenin çevrimsel davranışı değerlendirilmiştir. Ayrıca sistemin davranışını anlayabilmek amacıyla, deney sırasında belirli yer değiştirme seviyelerinde ayrıntılı olarak yapılan tespit ve gözlemler de sunulmuştur. Ayrıntılı tespit ve gözlemler ile deney sonuçlarının değerlendirmesi sonunda, göçmenin ince levhanın üst kenarının birleşim kesiti boyunca yırtılması sonucu meydana gelmesine rağmen, levhanın sistemin enerji sönümleme kapasitesine büyük oranda katkıda bulunduğu görülmüştür. Böylece ince levhalı çelik perdenin alternatif bir yatay yük taşıyıcı sistem olarak kullanılabileceği düşünülmektedir.
The behavior of a thin steel plate shear wall with semi-rigit beam-to-column connections under cyclic loads
Thin steel plate shear walls are very effective and economical lateral load-resisting systems. A thin steel plate shear wall is composed of vertical steel plates which are named as infill panels and columns and beams connected to steel panels. The beam-to-column connections may be either full moment- resisting and partially moment-resisting (semirigid) joint types or simple joint type. Infill steel panels are generally attached to the surrounding frames by either fillet welds or bolts. Utilization of steel plate shear walls began in early 1970’s. Initially, stiffened steel shear walls were used in Japan in new construction and in the USA for seismic retrofit of the existing buildings as well as in new buildings. Early steel shear walls have been designed such that shear buckling of the infill plate should not be occurred. Thus, in order to prevent the shear buckling of the steel panels vertical and horizontal stiffener members attached to the surfaces of the steel infills were used. In that design philosophy, post-buckling behavior of the steel panel was neglected. In this study, an experimental research which includes one, 1/3 scale, one-storey, single bay test specimen, so-called SW-A-H is performed under cyclic loading in order to understand the cyclic response of thin steel plate shear wall systems. The test specimen used for this purpose consists of a boundary frame and thin steel plate which is connected to boundary frame members on all edges. Infill plate is 0.50mm thick and has a height of 900mm and width of 1520mm. Self drilling screws with 5.5mm diameter are utilized to provide the connection between the infill and surrounding frame members. Also, a fish plate welded to the flange of each frame member is used. In this experimental study, the specimen is tested in accordance with the ATC-24, Guidelines for Cyclic Seismic Testing of Components of Steel Structures, by Applied Technology Council. In accordance with ATC-24, the number of cycles with a peak deformation less than yield displacement were eighteen. The number of cycles with peak deformation that is equal to yield displacement are three. After the cycles with peak deformation larger than yield displacement, the increment of yield displacement was applied to the peak displacement for each step. In order to determine the material properties of the infill panel and beam end plates tension coupon tests were conducted at Construction Materials Laboratory of ITU. The coupons were cut in two orthogonal directions from the infill plate. While six coupons were used for the infill panels three coupons were taken for the beam end plates. Cyclic test of the specimen was performed at Structural and Earthquake Engineering Laboratory of ITU. A loading system with an actuator which is capable of producing 250kN and having a stroke with the capacity of ±300mm is utilized. After the experimental observations during testing of the specimen are described, the data from the measurement devices such as strains, displacements and loads are evaluated to generate the information about the behavior of the specimen and response of the infill plate. Therefore, several properties of systems are extracted from the experimental data, namely, initial stiffness, yield base shear and displacement, cumulative energy dissipation and displacement ductility. Furthermore, the orientation and the magnitude of the principal stresses and strains in the infill plate during linear and nonlinear portions are examined and the variation of the strain magnitude and energy dissipation across the infill is investigated. The results obtained from the tests of the specimen, load-deflection curve and envelope curves of the hysteresis, are also presented. The use of thin steel plate shear wall to resist seismic forces is possible. The experimental results are shown that the entire infill panel of the shear wall specimen SW-A-H participated in dissipating energy. The specimen utilizing flat infill panels and screwed connections to the surrounding frame is found to be reasonably ductile and failure is the result of fractures (tears) in the net sections. Despite these fractures in the net sections, which appeared first at -5 δ y in the specimen SW-A-H the specimen did not suffer a significant loss of strength until 6 times the yield displacement. But, at the displacement level of 7 δ y, the shear force of SW-A-H was suddenly dropped by 34%.
___
- ATC-24, (1992). Guidelines for cyclic seismic testing of components of steel structures, Applied Technology Council, California.
- Basler, K., (1961). Strength of plate girders in shear, Journal of Structural Division, 87, ST7, 2967.
- Berman, J. ve Bruneau, M., (2005). Experimental investigation of light-gauge steel plate shear walls, Journal of Structural Engineering, 131, 2, 259-267.
- Bruneau, M. ve Bhagwagar, T., (2002). Seismic retrofit of flexible steel frames using thin infill panels, Engineering Structures, 24, 443-453.
- Caccese, V., Elgaaly, M. ve Chen, R., (1993). Experimental study of thin steel-plate shear walls under cyclic loading, Journal of Structural Engineering, 119, 2, 0573-0587.
- Driver, R.G., Kulak, G.L. Kennedy, D.J.L. ve Elwi, A.E., (1998). Cyclic test of four-story steel plate shear wall, Journal of Structural Engineering, 124, 2, 0112-0120.
- Elgaaly, M., Caccese, V. ve Du, C., (1993). Postbuckling behavior of steel-plate shear walls under cyclic loads, Journal of Structural Engineering,, 119, 2, 588-605.
- Lubell, A.S., Prion, H.G.L., Ventura, C.E. ve Rezai, M., (2000). Unstiffened steel plate shear wall performance under cyclic loading, Journal of Structural Engineering, 126, 4, 0453-0460.
- Sabouri-Ghomi, S., Ventura, C.E. ve Kharrazi, M.H.K., (2005). Shear analysis and design of ductile steel plate walls, Journal of Structural Engineering, 131, 6, 878-889.
- Takahashi, Y., Takemoto, Y., Takeda, T. ve Takagi, M., (1973). Experimental study on thin steel shear walls and particular bracing under alternative horizontal load, Proceedings, IABSE Symp. on Resistance and Ultimate Deformability of Structure Acted on by Well-Defined Repeated Loads, 185-191, Lisbon.
- Thorburn, L.J. ve Kulak, G.L., (1983). Analysis of steel plate shear walls, Structural Engineering Report, University of Alberta, 107, Canada.
- Timler, P., Ventura, C.E., Prion, H. ve Anjam, R., (1998). Experimental and analytical studies of steel plate shear walls as applied to the design of tall buildings, The Structural Design of Tall Buildings, 7, 233-249.
- Timler, P.A. ve Kulak, G.L., (1983). Experimental study of steel plate shear walls, Structural Engineering Report, University of Alberta, 114, Canada.
- TS-138 EN 10002-1, (2004). Metallic materialstensile testing-part 1: method of test at ambient temperature, Turkish Standards Institute, Ankara. Vatansever, C. ve Yardımcı, N., (2007). İnce levhalı bir çelik perdenin artan yatay yük altında analitik olarak incelenmesi, 2. Çelik Yapılar Ulusal Sempozyumu, 10-11 Mayıs, Eskişehir.
- Wagner, H., (1931). Flat sheet metal girders with very thin metal webs, part I-general theories and assumptions, Technical Report, National Advisory Committee for Aeronautics, 604.