Gökova Körfezi depremlerinin kaynak parametreleri ve Rodos-Dalaman bölgesinde tsunami riski

Gökova Körfezi Türkiye 'nin güneybatısında Ege Denizi kıyısında yer alan ve bölgedeki tektonik ve depremsellik açısından aktif graben sistemlerinden biridir. Son yıllarda özellikle 2004-2005 tarihleri arasında körfez içerisinde bir çok sayıda orta büyüklükte (Mw>5.0) deprem meydana gelmiştir. Bu çalışmada ters çözüm teknikleri ve telesismik uzaklıklarda kaydedilen P ve SH dalga şekilleri kullanılarak bölgede oluşan güncel depremlerin kaynak mekanizması parametreleri ve fay düzlemi üzerinde meydana getirdikleri kayma dağılımı ve yırtılma süreçleri modelleri elde edilmiştir. En küçük hatalı kaynak mekanizması çözümlerine göre depremler genel olarak D-B doğrultulu normal faylanma mekanizması ile sığ odak derinliklerinde meydana gelmektedirler. Kaynak mekanizması çözümlerinde çok küçük miktarlarda doğrultu atımlı faylanma bileşenleri bulunmaktadır. Telesismik cisim dalgalarının ve yakın alan istasyonların ters çözüm ile modellenmesi sonucu elde edilen kayma dağılımı modelleri ise depremlerin oldukça basit şekilli ve dalım yönünde ilerleyen dairesel kırılmalar ile meydana geldiklerini göstermektedir. Ayrıca, Hellenik Yayı 'nın doğu uzanımı üzerinde yer alan Rodos adası ve çevresinde tarihsel dönem içerisinde meydana gelen ve tsunami (depreşim) dalgalarına neden olduğu rapor edilen birçok sayıda deprem bulunmaktadır. 1481 yılında meydana gelen tarihsel depremler için sığ su dalgası teorisine dayalı yöntemlerle ve GEBCO-BODC batimetri verisi ile tsunami dalga simülasyonları yapılmıştır. Simülasyon sonuçları bu bölgede meydana gelen bir depremin daha çok episantıra yakın bölgelerde örneğin Rodos adası ve çevresinde ve Gökova Körfezi - Fethiye kıyılarında etkili tsunami dalgalarına neden olduğunu göstermektedir.

Source mechanism parameters of Gulf of Gökova earthquakes and tsunami risk in the Rodos-dalaman region

The Gulf of Gökova locates in soutwestern Turkey near the Aegean Sea and surrounded by Datça Peninsula to the south, the island of Kos to the west and Bodrum Peninsula to the north. Active deformation in the region has been observed from widespread seismicity, active normal faulting and tectonically generated topography. In recent and historical times, many destructive earthquakes have occurred in southwestern Turkey. Most of the seismic activity is concentrated along the northern branch of Gökova Fault Zone and it is controlled by E-W trending normal fault system. Intense earthquake activity occurred in Gulf of Gökova in August 2004 and January 2005. Source mechanism solutions and rupture histories for 10 earthquakes, of magnitude Mw > 5.0 and shallow focal depth (h < 20 km), which occurred in the region during the period 1986-2005, are used to investigate the geometry of faulting in the region. To obtain source mechanisms and slip distributions on the fault plane, we compared the shapes and amplitudes of long period P- and SH-waveforms recorded in the distance range of 30-90 degrees. The seismograms are formed by the combination of direct (P or SH) and reflected (pP and sP, or sS) phases from a point source embedded in a given velocity structure. Receiver structures are assumed to be homogeneous half-spaces. Seismograms were weighted according to the azimuthal distribution of stations. The solutions were also constrained by P-wave first motion polarities of near-field stations. All the distribution of P-wave first-motion polarities on the equal-area projection of the lower focal hemispheres are consistent with the minimum misfit solutions within a few degrees, with the strikes and dips of the nodal planes. We have also obtained earthquake rupture histories and slip distribution on the fault plane using teleseismic broad-band P waveforms. The rupture process were presented as a spatio temporal slip distribution on a fault plane which was divided into M x N subfaults with length dx and width dy. Then, slip-rate function on each sub fault was described by a series of triangle functions with a rise time.Generally, earthquakes initiates with an earthquake cluster activity and continue for a long time in the gulf. This kind of earthquake generation pattern can carry on by weeks or months decreasing in frequency and in magnitude. The kinematics of the deformation is controlled by normal faults with small strike slip components trending E-W, NE-SW and NW-SE directions. Earthquake source mechanism solutions indicate that normal fault mechanism with a strike-slip component have been observed on the E-W oriented graben and normal fault systems in the Gulf of Gökova and they confirm that extension is in a north - south direction that is in a good agreement with the geology and tectonic structure of the region. T-axes directions obtained from source mechanism solutions demonstrate the NW-SE direction of extension as a result of the convergence between the African plate and the Eurasian plate and the westward movement of the Anatolian block. On the other hand, all earthquakes have generally short source duration and uniform rupture propagation along the dip direction and their focal depths are generally less than 15 lan and thus we may suggest that seis-mogenic thickness in this region is about -10 km. All these slip distribution results show a uniform circular rupture propagation along the dip direction with a short source duration for earthquakes in Gulf of Gökova .On the other hand, the Gulf of Gökova has a real and major tsunami hazard to the lives and population since it is near the Eastern Mediterranean coast. In this study we have also investigated the tsunami wave propagations to obtain time histories of water surface fluctuations and water particle velocities created by historical 1481 Rhodes earthquakes (M-7.0-7.5) in the Eastern Mediterranean sea using TUNAMI-N2 and AVI-NAMI mathematical models based on the method of Okada (1985). The related parameters for the earthquake are adapted by an analogy of current plate boundaries and earthquake source mechanisms obtained by inversion of teleseismic P- and SH- waveforms. The understanding the faulting geometry, tectonic evolutions and source rupture processes along the active fault zones have significant importance on the tsunami generation. The major and well-known seismic generated tsunamis have occurred in Aegean and Mediterranean Seas and these waves affected the coastal regions since historical times.

___

  • Altınok, Y. ve Ersoy Ş., (2000). tsunamis observed on and near the turkish coast, Natural Hazards, 21, 185-205.
  • Ambraseys, N.N., (1960). The seismic sea wave on July 9, in the Greek archipelago, Journal of Geophysical Research, 65, 4, 1257-1265.
  • Ambraseys, N.N., (1962). Data for the investigation of the seismic sea waves in the Eastern Mediterranean, Bulletin of the Seismological Society of America, 52, 895-913.
  • Ben Menahem, A., (1979). Earthquake catalogue for the Middle East (92 B.C. to 1980 A.D.), Bolletino di Geofisica Teorica ed Applicata, 21, 245-313.
  • Fokaefs, A. ve Papadopoulos, G.A., (2006). Tsunami hazard in the Eastern Mediterranean: strong earthquakes and tsunamis in Cyprus and the Levantine Sea, Natural Hazard, DOI: 10.1007/S11069-006-9011-3.
  • Görür, N., Şengör, A.M.C., Sakınç, M., Tüysüz, O., Akkök, R., Yiğitbaş, E., Oktay, F, Barka, A., Sarıca, N., Ecevitoğlu, B., Demirbağ, E., Ersoy, Ş., Algan, O., Güneysu, C. ve Aykol, A., (1995). Rift formation in the Gökova Region, Southwest Anatolia: Implications for the opening of the Aegean Sea, Geological Magazine, 132, 637-650.
  • Guidoboni, E., Comastri, A. ve Triana, G., (1994). Catalogue of Ancient Earthquakes in the Mediterranean Area up to the 10th century, Instituto Nazionale di Geofisica, Rome.
  • Guidoboni, E. ve Comastri, A., (2005a). Catalogue of earthquakes and tsunamis in the Mediterranean area from the ll'h to the 15th century. INGV-SGA, Bologna, 1037, Italy.
  • Guidoboni^ E. ve Comastri, A., (2005b). Two thousand years of earthquakes and tsunamis in the Aegean area (from 5th BC to 15th Century), International Symposium on the Geodynamics of Eastern Mediterranean: Active Tectonics of the Aegean Region, 242, Kadir Has University, Istanbul.
  • Imamura, F., (1995). Tsunami numerical simulation with the staggered leap-frog scheme (numerical code of TUNAMI-N1), School of Civil Engineering, Tohoku University.
  • Kurt, H., Demirbağ, E. ve Kuşçu, İ., (1999). Investigation of submarine active tectonism in the Gulf of Gökova, SW Anatolia - SE Aegean Sea, by multi-channel seismic reflection data, Tectono-physics, 305, 477-496.
  • Kurt, H., (2000). Gökova ve Saros Körfezlerinin aktif tektonizmalarının sismik yansıma verileri ile incelenmesi, Doktora tezi, İTÜ Fen Bilimleri Enstitüsü, İstanbul.
  • Kissel, C., Laj, C., Mazaud, A., Poisson, A., Savaşçın, Y., Simeakis, K. ve Mercier, J.L., (1986). Palaeomagnetic evidence for Neogene rotational deformations in the Aegean domain, Tectonics, 5, 783-795.
  • Mai, P.M. ve Beroza, G.C., (2000). Source scaling properties from finite-fault-rupture models, Bulletin of the Seismological Society of America, 90, 604-615.
  • McKenzie, D.P., (1972). Active tectonics of the Mediterranean region, Geophysical Journal. Royal Astronomical Society, 30, 109-185.
  • McClusky, S., Balassanian, S., Barka, A., Demir, E., Ergintav, S., Georgiev, I., Gurkaıa, O., Hamburger, M., Hurst, K., Kahle, E., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ou-zounis, A., Paradissis, D., Peter, Y., Prilepin, M., Reilinger, R., Sanlı, I.,Seeger, H., Tealeb, A., Toksöz, M.N. ve Yeis, G., (2000). Global positioning system constraints on plate kinematics and dynamics in the Eastern Mediterranean and Caucaus, Journal of Geophysical Research, 105, B3, 5695-5719.
  • McClusky, S., Reilinger, R., Mahmoud, S., Ben Sari, D. ve Tealeb, A., (2003). GPS constraints on Africa (Nubia) and Arabia plate motions, Geophysical Journal International, 155, 1, 126-138.
  • Minoura, K., İmamura, F., Kuran, U., Nakamura, T., Papadopoulos, G.A., Takahashi, T. ve Yalçıner, A.C., (2000). Discovery of Minoan tsunami deposits, Geology, 28, 59-62.
  • Okada, Y., (1985). Surface deformation due to shear and tensile faults in a half-space, Bulletin of the Seismological Society of America, 75, 1135-1154.
  • Papadopoulos, G.A. ve Chalkis, B.J., (1984). Tsunamis observed in Greece and surrounding area from antiquity to the present times, Marine Geology, 56, 309-317.
  • Papadopoulos, G.A. ve Fokaefs, A., (2005). Strong tsunamis in the Eastern Mediterranean Sea: A Re-Evaluation, I SET Journal of Earthquake Technology, 42, 4, 159-170.
  • Papadopoulos, G.A., Daskalaki, E., Fokaefs, A. ve Giraleas, N., (2007). Tsunami hazard in the Eastern Mediterranean: strong earthquakes and tsunamis in the east Hellenic Arc and Trench system, Natural Hazards and Earth System Sciences, 7, 57-64.
  • Papazachos, B.C., Koutitas, Ch., Hatzidimitriou, P.M. ve Papaioannou, Ch.A., (1986). Tsunami hazard in Greece and the surrounding area, An-nali di Geofısica, 4B, 79-90.
  • Soloviev, S.L, Solovieva, O.N., Go, C.N, Kim, K.S. ve Shchetnikov, N.A., (2000). Tsunamis in the Mediterranean Sea 2000 B.C.-2000 A.D, Advances in Natural and Technological Hazards Research, 13, Kluwer, Dordrecht.
  • Tan, O., (2004). Kafkasya, Doğu Anadolu ve Kuzeybatı İran Depremlerinin Kaynak Mekanizması Özellikleri ve Yırtılma Süreçleri, Doktora Tezi, İTÜ Fen Bilimleri Enstitüsü, İstanbul.
  • Tan, O., (2005). Arabistan-Avrasya kıtasal çarpışma bölgesindeki depremlerin benzerlik ilişkileri, İTÜ Dergisi, 4, 6, 105-115.
  • Tan, O. ve Taymaz, T., (2006). Active tectonics of the Caucasus: Earthquake source mechanisms and rupture histories obtained from inversion of teleseismic body waveforms. In Post-collisional Tectonics and Magmatism in the Mediterranean Region and Asia, Geological Society of America, Special Paper, 409, 531-578, DOI: 10.1130/2006.2409 (25).
  • Taymaz, T., 1990. Earthquake source parameters in the Eastern Mediterranean Region, PhD Thesis, Darwin College, University of Cambridge, U.K.
  • Taymaz, T, Jackson, J. ve Westaway, R., (199Ö). Earthquake mechanisms in the Hellenic Trench near Crete, Geophysical Journal International, 102,695-731.
  • Taymaz, T., Jackson, J.A. ve McKenzie, D., (1991). Active tectonics of the north and central Aegean Sea, Geophysical Journal International, 106, 433-490.
  • Taymaz, T., Westaway, R. ve Reilinger, R., (2004a). Active faulting and crustal deformation in the Eastern Mediterranean Region, Tectonophysics, 391, 1-4, 1-9.
  • Taymaz, T., Tan, O. ve Yolsal, S., (2004b). Seis-motectonics of Western Turkey: A synthesis of source parameters and rupture histories of recent earthquakes, Convergent Plate Tectonics of the Mediterranean Region, EOS Transactions AGU, 85, 47, Fall Meeting Supplement, Abstract T53B-0481: 408, Moscone Convention Center, San Fransisco, USA.
  • Taymaz, T., Yılmaz, Y. ve Dilek, Y., (2007a). The Geodynamics of the Aegean and Anatolia, (eds.) Geological Society, London, Special Publications, ISBN: 978-1-86239-239-7, 291, 320.
  • Taymaz, T., Yılmaz, Y. ve Dilek, Y., (2007b). The Geodynamics of the Aegean and Anatolia: Introduction,, Geological Society, London, Special Publications, 291, 1-16.
  • Taymaz, T., Tan, O. ve Yolsal, S., (2008a). Recent devastating earthquakes in Turkey and active tectonics of the Aegean and Marmara Seas in Huseybe, E.S, eds, Earthquake monitoring and seismic hazard mitigation in Balkan countries, NATO Science Series, 81, 47-55, ISBN 978-1-4020-6814-0, Springer Science and Business Media.
  • Taymaz, T., Yolsal, S. ve Yalçıner, A.C., (2008b). Seismotectonics of the Cyprus Arc and Dead Sea transform fault and simulations of the historical earthquakes and tsunamis, Geophysical Research Abstracts, 10, EGU2008-A-00063, General Assembly 2008, Vienna-Austria.
  • Uluğ, A., Duman, M., Ersoy, Ş., Özel, E. ve Avcı, M., (2005). Late Quaternary sea-level change, sedimentation and neotectonics of the Gulf of Gökova: Southeastern Aegean Sea, Marine Geology, 221, 381-395.
  • Wells D.L. ve Coppersmith, K.J., (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, Bulletin of the Seismological Society of America, 84, 974-1002.
  • Yagi, Y. ve Kikuchi, M., (2000). Source rupture process of the Kocaeli, Turkey, earthquake of August 17, 1999, obtained by joint inversion of near-field data and teleseismic data, Geophysical Research Letters, 27,1969-1972.
  • Yalçıner, A.C., Kuran, U., Akyarlı, A. ve Imamura, F., (1995). An investigation on the generation and propagation of tsunamis in the Aegean Sea by mathematical modeling in Tsuchiya, Y. ve Shuto, N., eds, Tsunami: Progress in prediction, disaster prevention and warning, Advances in Natural and Technological Hazards, Kluwer Academic Publishers, 55-70.
  • Yalçıner A.C., Altınok, Y. ve Synolakis, C.E., (2000). Tsunami waves in Izmit Bay after the Kocaeli Earthquake in: Book on Kocaeli Earthquake, Chapter 13, published by EERI, (Earthquake Engineering Research Institute, USA), Special issue of Earthquake Spectra.
  • Yalçıner, A.C. ve Pelinovsky, E., (2007). A short cut numerical method for determination of periods of free oscillations for basins with irregular geometry and bathymetry, Ocean Engineering, D01:10.1016/j.oceaneng.2006.05.016
  • Yolsal, S. ve Taymaz, T.,-(2004). Seismotectonics of the Cyprus Arc and Dead-Sea Fault Zone: Eastern Mediterranean, EOS Transactions AGU, 85, 47, Fall Meeting Suppl., Abstract T52B-06, p.389, Moscone Convention Center, SanFran-sisco, USA, December 13-17, 2004.
  • Yolsal, S., Taymaz, T. ve Yalçıner, A.C., (2007a). Understanding tsunamis, potential source regions and tsunami prone mechanisms in the Eastern Mediterranean in Taymaz, T., Yılmaz,Y. ve Dilek, Y. eds, The geodynamics of the Aegean and Anatolia, Special Publication, Geological Society of London, 291, 201-230.
  • Yolsal, S., Taymaz, T. ve Yalçıner, A.C., (2007b).' Source characteristics of earthquakes along the Hellenic and Cyprus Arcs and simulation of historical tsunamis, Geophysical Research Abstracts, 9, EGU2007-A-02306, EGU General Assembly 2007, Vienna-Austria.
  • Yolsal, S., Taymaz, T. ve Yalçıner, A.C., (2007c). Hellenik ve Kıbrıs yayı depremlerinin kaynak parametreleri ve tarihsel depremlerle ilişkili tsunami simülasyonları, Bildiriler Kitabı, 6. Ulusal Kıyı Mühendisliği Sempozyumu, TMMOB İnşaat Mühendisleri Odası, 509-516, İzmir.
  • Yolsal, S. ve Taymaz, T., (2007d). Source mechanism and rupture histories of the recent Gulf of Gökova and Sığacık Bay earthquakes, Geophysical Research Abstracts, 9, EGU2007-A-01776, EGU General Assembly 2007, Vienna-Austria.
  • Yolsal, S., Taymaz, T. ve Yalçıner, A.C., (2008a). Earthquake source rupture characteristics along the hellenic arc and simulation of the AD 365 Crete earthquake and its tsunami, Geophysical Research Abstracts, 10, EGU-2008-A-00065, EGU General Assembly 2008, Vienna-Austria.
  • Yolsal, S., Taymaz, T. ve Yalçıner, A.C., (2008b). Source mechanisms of the recent rhodes-Dodecanese Islands Earthquakes and historical tsunami simulations in the eastern Mediterranean, Geophysical Research Abstracts, 10, EGU-2008-A-00072, EGU General Assembly 2008, Vienna-Austria.
  • Zwick, P., McCaffrey, R. ve Abers, G., (1994). MT5 Program, IASPEI Software Library, 4, USA.