Değişen hücre yönlü kapalı formülasyon yöntemi
Bu çalışmada, "Değişen Ardışık Hücre Yönlü Kapalı Formülasyon - DAHYKF" adlı kısmi diferansiyel denklem çözen yeni bir sayısal yöntem geliştirilmiştir. Yöntemde "Değişen Yönlü Kapalı Formülasyon -DYKF (Alternating Direction Implicit - ADI) yöntemindeki değişen yönler kavramınından ilham alınmıştır. Fakat yeni yöntemdeki değişen yön DYKF 'de olduğu gibi eğrisel koordinat değil, "Ardışık Hücre Yönleri" dir. Ardışık Hücre Yönleri dörtgen elemanların karşılıklı kenarlarını takip ederek oluşan ardışık yönlerdir. DAHYKF yöntemi ile daire etrafındaki sıkıştırılamaz potansiyel akım elde edilen sonuçlar analitik çözümlerle, klasik DYKF yöntemi sonuçlarıyla ve Runge-Kutta zaman integrasyonu kullanan bir Sonlu Hacimler yöntemi sonuçlarıyla karşılaştırılmıştır. Sonuçlar yöntemin yapısal ve yapısal olmayan çözüm ağlarında aynı yüksek performansı gösterdiği ve bunun yanında kullanımının kolay olduğunu göstermiştir.
Alternating cell directions implicit method
In this study, a new numerical method named as "Alternating Cell Directions implicit - ACDI" for solving partial differential equations is developed. In this study, testing of this method is targetted, since the method is being newly developed. Therefore, the method is applied on two-dimensional problems, and the incompressible potential flow is considered as an example test problem. Application of the method for three-dimensional cases is possible. This method is inspired by alternating directions concept of "Alternating Directions Implicit - ADI) method. In the new method, alternating direction is not curvilinear coordinate like as in the ADI method, but this is "Sequential Cell Directions". Cell direction is formed by following from one edge to its opposite edge on quadrilateral. Sequential directions means a chain of directions formed by sequantial cells. In this study, a cell centered finite volume variation of potential ACDI methods is presented. The solutions obtained by the ACDI method for the incompressible potential flow around a circular cylinder is compared with the analytical solutions, with the results of the classical ADI method and a finite volume method using Runge-Kutta time integration. The results show that this method has the same high performance on structured and unstructured grids, and its usage is easy.
___
- Abarbanel,S., Dwoyer,D., Gottlieb,D., (1986). Improving the convergence rate to steady state of parabolic ADI methods, Journal of Computational Physics, 67, 236-239.
- Abrashin,V.N., Dzyuba,I.A., (1994). An alternating direction method for solving multidimensional problems of mathematical physics in doain with curvilinear boundary, Differential Equations, 30, 7, 1082-1087.
- Anderson,D.A., Tannehill,J.C. ve Pletcher,R.H., (1984). Computational fluid mechanics and heat transfer, Hemisphere Publication Corporation, New York, s.599
- Beam,R.M. ve Warming,R.F., (1982). Implicit numerical method for the compressible navierstokes and euler equations, 1981-82 Lecture Notes of Von Karman Institute for Fluid Dynamics.
- Cai, Z., Douglas, J., Park, M., (2003). Development and analysis of higher order finite volume methods over rectangles for elliptic equations, Advances in Computational Mathematics, 19, 3-33.
- Caughey, D.A. ve Hafez, M. M., (1994). Frontiers of computational fluid dynamics, John-Wiley & Sons, New York.
- Douglas,J., (1955). Variable time steps in the solution of the heat flow equation by a differenceequation, American Mathematical Society. Proceedings [Issn: 0002-9939], 6, 787-793, 1955.
- Douglas,J., (1956), The solution of the heat equation by a high order correct difference equation, Studies in Applied Mathematics, 35, 145-151.
- Douglas,J., (1956). On the relation between stability and convergence in the numerical solution of the linear, SIAM Journal on Applied Mathematics, 4, 20-37.
- Douglas,J., Rachord,H., (1956). On the numerical solution of heat conduction problems in two and three space variables, American Mathematical Society. Transactions, 82, 421-439.
- Henne,P.A., (1990), Applied computational aerodynamics, AIAA Inc.,Washington.
- Hoffmann,K.A. ve Chiang,S.T., (2000). Computational fluid dynamics, Engineering Education System, Wichita, Kansas.
- Jameson,A., (1997). Essential elements of computational algorithms for aerodynamics analysis and design, NASA/CR 97 206268.
- Jameson,A., (2003). The role of cfd in preliminary aerospace design, 4th ASME-JSME Joint Fluids Engineering Conference, Jully 6-11, Honolulu, Hawaii.
- Jones, R.T., (1979). Classical aerodynamic theory, NASA Reference Publication 1050.
- Pozrikidis,C., (1998). Numerical computations in science and engineering, Oxford University Press.
- Sedgewick,R., (1988). Algorithms, Addison-Wesley Publishing Company, USA.
- Swanson,R.C. and Turkel,E., (1997). Multistage schemes with multigrid for euler and navierstokes , NASA Technical Paper 3631, Langley Research Center, Hampton, Virginia.