Bir güç sisteminde Hopf çatallanmaları ve salınımların sönümlendirilmesi
Bu çalışmada, Senkronaltı Rezonans (SSR) oluşan bir elektrik güç sistemindeki Hopf çatallanmaları incelenmekte ve kararsız burulma salınımlarının sönümlendirilmesi için tasarlanan bir kontrolör sunulmaktadır. SSR araştırmaları için geliştirilen IEEE İkinci Gösterge Modelinin birinci sistemi kullanılmıştır. Senkron makinenin amortisör sargıları doğrusal olmayan modele dahil edilmiştir. Seri kompanzasyon kapasitörü tesis edilmiş olan enerji iletim hatlarına bağlı senkron makineler, potansiyel olarak senkronaltı elektrik modunun, türbin-generatör şaft sisteminin burulma salınım modları ile etkileşimine maruz kalabilirler. Modellenen elektrik güç sisteminde meydana gelen Hopf çatallanmalarının hangi tip olduğu, birinci Lyapunov katsayılarının analitik olarak hesaplanması ile belirlenmiştir. Sabit ikaz uygulanan modelde kritik-altı Hopf çatallanması meydana gelmektedir. Diğer yandan, Otomatik Gerilim Düzenleyicisinin (AVR) eklenmesi ile modelde kritik-üstü Hopf çatallanması oluşmaktadır. Ayrıca, SSR sonucu ortaya çıkan kararsız burulma salınımlarının sönümlendirilmesi için, zaman gecikmeli geri besleme kontrol teorisine dayanan bir kontrolör tasarlanmıştır. Kontrol girdisi olarak sadece senkron makine rotorunun açısal hızını kullanan kontrolörün zaman gecikme ve kazanç parametreleri için uygun değerler, sistemin dinamik cevabını değerlendiren bir performans endeksi hesaplanarak belirlenmiştir. Tasarlanan kontrolörün etkili sonuçlar verdiği benzetimler yardımı ile gösterilmiştir. Kontrolör etkinliği değerlendirilirken, AVR ve kontrolör çıkış sınırlayıcıları da modele dahil edilmiş ve seri kapasitör kompanzasyonunun pratik işletme değerleri için kontrolörün etkili olduğu görülmüştür.
Hopf bifurcations in a power system and damping oscillations
Series capacitor compensation of AC transmission lines as a means of increasing load carrying capacity and enhancing transient stability has a widespread use in power systems, particularly in the North America. On the other hand, potential danger of interaction between torsional oscillation modes of the turbine generator shaft system and the subsynchronous electrical mode may arise in electric power systems consisting of turbine-generators connected to transmission lines with series compensation capacitors. This phenomenon is called Subsynchronous Resonance (SSR). Unless adequate measures are implemented, unstable torsional mode oscillations due to SSR can lead to catastrophic turbine- generator shaft failures, as occured at Mohave power plant in 1970 and 1971. Since then, considerable effort to the analysis of SSR phenomenon has been devoted by researchers and industry professionals. In this study, Hopf bifurcations in a power system susceptible to SSR is investigted and a novel controller based on the delayed feedback control theory to stabilize unstable torsional oscillations caused by SSR is presented. Bifurcation theory is employed for the analysis of torsional oscillations in a power system which consists of a synchronous generator connected to an infinite busbar through two parallel transmission lines one of which is equipped with a series compensation capacitor. The first system of the IEEE Second Benchmark Model for Subsynchronous Resonance studies has been used. Damper windings of the synchronous generator are included in the nonlinear model. The state equations representing the dynamics of the electrical system, mechanical system and the excitation system are obtained separately and then combined into one set of ordinary differential equations. Occurrence of Hopf bifurcations in the model at certain values of the series compensation factor has been verified by tracing the eigenvalues of the Jacobian matrix evaluated at equilibrium. Loss of stability occurs in the first and second torsional oscillation modes through Hopf bifurcation due to SSR. Instead of using the Floquet multipliers method, the first Lyapunov coefficient has been computed analytically to determine the type of Hopf bifurcations (supercritical or subcritical), thereby stability condition of the limit cycles emanating from the Hopf bifurcation points. It is found that subcritical Hopf bifurcation occurs in the model without an Automatic Voltage Regulator (AVR). On the other hand, in the model with AVR, supercritical Hopf bifurcation occurs. Time domain simulations in MATLABSimulink are presented to demonstrate the validity of analytic findings. The proposed controller is based on the delayed feedback control theory. The Time Delay Auto- Synchronization (TDAS) controller requires the measurement of the synchronous generator rotor angular speed as the only input. The difference between the value of the controller input signal in τ- time unit in the past and its current value is multiplied by a gain to obtain an output signal which is combined into the AVR as the stabilizing signal. The effective performance of the controller in providing sufficient damping for the unstable torsional oscillations depends on the correct setting of time delay and gain parameters of the controller. For this purpose, an optimization performance index (OPI), which evaluates damping performance of the controller in time-domain dynamic responses of the model, has been defined. Time-domain simulations in MATLAB-Simulink were carried out to evaluate the effectiveness of the TDAS controller in providing additional damping for the unstable torsional oscillations at various series compensation levels, provided that the time delay and gain parameters are correctly set. Performance of the TDAS controller has been investigated in the presence of AVR limiters in order to obtain a realistic assessment. The TDAS controller output limiter is also included so that the impact on the AVR’s voltage regulating performance remains limited. Time domain simulations are presented to demonstrate the effectiveness of the proposed controller even in the presence of the limiters within the practical operating ranges of series capacitor compensation.
___
- Ahlborn, A. ve Parlitz, U., (2004). Stabilizing unstable steady states using multiple delay feedback control, Physical Review Letters, 93, 264101.
- Anderson, P.M., Agrawal, B.L. ve Van Ness, J.E., (1990). Subsynchronous Resonance in Power Apparatus and Systems, IEEE Press, New York.
- Drazin, P.G., (1992). Nonlinear Systems, Cambridge University Press, Cambridge.
- Farmer, R.G., Katz, E. ve Schwalb, A.L., (1977). Navajo Project on Subsynchronous Resonance analysis and solutions, IEEE Transactions on Power Apparatus and Systems, 96, 1226-1232.
- Harb, A.M., (1996). Application of bifurcation theory to Subsynchronous Resonance in power systems, Doktora Tezi, Department of Electrical Engineering, Virginia Polytechnic Institute and State University, Blacksburg.
- Harb, A.M. ve Widyan, M.S., (2004), Chaos and bifurcation control of SSR in the IEEE second benchmark model, Chaos Solitons and Fractals, 21, 537-552.
- Hingorani, N.G., (1981). A new scheme for Subsynchronous Resonance, IEEE Transactions on Power Systems, 7, 1, 150-157.
- IEEE Committee Report, (1992). Reader’s guide to Subsynchronous Resonance, IEEE Transactions on Power Systems, 7, 1, 150-157, February 1992.
- IEEE SSR Working Group, (1977). First Benchmark Model for computer simulation of Subsynchronous Resonance, IEEE Transactions on Power Apparatus and Systems, 96, 1565-1572.
- IEEE SSR Working Group, (1985). Second Benchmark Model for computer simulation of Subsynchronous Resonance, IEEE Transactions on Power Apparatus and Systems, 104, 1057-1066.
- Kucukefe, Y. ve Kaypmaz, A., (2008). Hopf bifurcations in the IEEE Second Benchmark Model for SSR studies, 16th Power Systems Computations Conference, Glasgow, United Kingdom, July 14- 18.
- Kundur, P., (1994). Power system stability and control, McGraw-Hill, New York.
- Kuznetsov, Y.A., (2004). Elements of applied bifurcation theory, Springer-Verlag, New York.
- Padiyar, K.R. ve Prabhu, N., (2008). Design and performance evaluation of subsynchronous damping controller with STATCOM, IEEE Transactions on Power Delivery, 21, 1, 1398-1405.
- Pyragas, K., (1992). Continuous control of chaos by self-controlling feedback, Physics Letters A, 170, 421-428.
- Pyragas, K., Pyragas, V. ve Benner, H., (2004). Delayed feedback control of dynamical systems at a subcritical Hopf bifurcation, Physical Review E, 70, 056222.
- Wang, L. ve Hsu, Y.Y., (1988). Damping of Subsynchronous Resonance using excitation controllers and static VAR compensators: A comparative study, IEEE Transactions on Energy Conversion, 3, 1, 6-13.
- Zhu, W., Mohler, R.R., Spee, R., Mittelstadt, E.A. ve Maratukulam, D., (1995). Hopf bifurcations in a SMIB power system with SSR, IEEE Transactions on Power Systems, 11, 3, 1579-1584.